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Directed Graphical Model

ÅBelief networks, Bayesian belief networks

ÅConvenient framework for representing 
independence assumptions

ὴὥὼ represent the parental variables of variable ὼ



The Challenge of Unstructured Modeling

ÅWith probabilistic models, we can do many 
tasks like
ïDensity estimation

ïDenoising

ïMissing value imputation

ïSampling

ïThese tasks are often more complicated than 
classification

ïLearning probabilistic models requires  a complete 
understanding of the entire structure of the input



Sampling 



The Challenge of Unstructured Modeling

ÅModeling a rich distribution over thousands or millions of 
random variables is a challenging task, both 
computationally and statistically

ï32 Ǝ32 pixel color (RGB) image

ïς binary images of this form Čρπ times larger 
than the estimated number of atoms in the universe

ÅTable-based approach

ïRepresenting ὖ● by storing a lookup table with 
one probability value per possible outcome 

ïRequires Ὧ parameters!



Table-Based Model

ÅSpecifying ὴὼȠỄȠὼ over binary variables ὼ

ïTakes ὕς space Č impractical

ïcomputing a marginal -ὴὼ : summing over the 
ς states of the other variables 



Table-Based Model

ÅTable-based model is not feasible because of

ïMemory: the cost of storing the representation

ïStatistical efficiency

ÅRequire an astronomically large training set to fit accurately, given 
an astronomical number of parameters

ïRuntime: the cost of inference

ÅComputing the marginal distribution ὖὼ or the conditional 
distribution ὖὼ ὼ require summing across the entire table

ïRuntime: the cost of sampling

ÅSample some value u ŀU (0, 1), iterate through the table adding up 
the probability values until they exceed u

ÅRequires reading through the whole table in the worst case



Table-based model

ÅExplicitly model every possible kind of 
interaction between every possible subset of 
variables

ÅThe probability distributions we encounter in 
real tasks are much simpler than this.

ÅUsually, most variables influence each other 
only indirectly



Relay race example

ÅModeling the finishing times of a team in a relay 
race

ïThree runners: Alice, Bob and Carol.

ïModel each of their finishing times as a continuous 
random variable

Å/ŀǊƻƭΩǎ ŦƛƴƛǎƘƛƴƎ ǘƛƳŜ ŘŜǇŜƴŘǎ ƻƴƭȅ indirectlyon 
!ƭƛŎŜΩǎ ŦƛƴƛǎƘƛƴƎ ǘƛƳŜ Ǿƛŀ .ƻōΩǎ

We can model the relay race using only two interactions: 
!ƭƛŎŜΩǎ ŜŦŦŜŎǘ ƻƴ .ƻō ŀƴŘ .ƻōΩǎ effect on Carol.



Structured Probabilistic Model

ÅStructure

ïconstrain the nature of the variable interactions

ïspecify which variables are independent of others, 
leading to a structured factorisationof the joint 
probability distribution.

ÅE.g.) ὴὼȠỄȠὼ Б ‰ὼȟὼ



Structured probabilistic models 

(graphical models)
ÅProvide a formal framework for modeling only 

direct interactions between random variables
ïAllows the models to have significantly fewer 

parameters which can in turn be estimated reliably 
from less data
ÅReducing computational cost in terms of storing the model, 

performing inference in the model, and drawing samples from 
the model

ÅGraphical models can be divided into two 
categories: 
ï1) Directed Graphical Models 
ÅBased on directed acyclic graph

ï2) Undirected Graphical Models 
ÅBased on undirected graphs



Directed Graphical Models

Åknown as the belief network or Bayesian 
network

ÅDefined on variables ●is defined by a directed 
acyclic graph Ὃ

ïWith a set of local conditional probability 
distributions

ÅThe probability distribution over ●:



Relay Race Example

ÅDiscretizing time: ὸ, ὸand ὸeach be discrete variables 
with 100 possible values

ÅUnstructured model: p(t0,t1,t2) requires 999,999 values

ÅStructured model: requires a total of 19,899 values. 



Directed Graphical Models
ÅWhat kinds of information can and cannot be 

encoded in the graph?
ÅDGM
ïCan encode only simplifying assumptions about which 

variables are conditionally independent from each other
ïOnly defines which variables they are allowed to take in as 

arguments.

ÅBut, DGM
ïCannot encoder the ŀǎǎǳƳǇǘƛƻƴ ǘƘŀǘ .ƻōΩǎ ǇŜǊǎƻƴŀƭ 

running time is independent from all other factors
ÅWhere The conditional distribution is now a slightly more 

complicated formula using only ƪ ҍ 1 parameters

ïDoes not place any constraint on how we define our 
conditional distributions



Wet grass example

One morning Tracey leaves her house and realisesthat her grass is wet. Is 
it due to overnight rain or did she forget to turn o the sprinkler last night? 
Next she notices that the grass of her neighbour, Jack, is also wet.

This explains away to some extent the possibility 
that her sprinkler was left on, and she concludes
therefore that it has probably been raining



Wet grass example: 

Conditional independence

P(T|J,R,S)=P(T|R,S)
P(J|R,S)=P(J|R)

P(J|R,S)=P(J|R)
P(R|S)=P(R)

P(T,J,R,S)=P(T|R,S)P(J|R)P(R)P(S)

Conditional independence



Wet grass example: 

Conditional Probability Table  & Inference 

p(R = 1) = 0.2, p(S = 1) = 0.1.
p(J = 1|R = 1) = 1, p(J = 1|R = 0) = 0.2
p(T = 1|R = 1, S = 0) = 1, p(T = 1|R = 1, S = 1) = 1,
p(T = 1|R = 0, S = 1) = 0.9
p(T = 1|R = 0, S = 0) = 0.

Inference



Wet grass example: Inference

The probability that the sprinkler is on, given the extra evidence that 
Jack's grass is wet, is lower than the probability that the grass is wet 
given only that Tracey's grass is wet. This occurs since the fact that Jack's
grass is also wet increases the chance that the rain has played a role in 
making Tracey's grass wet.



Burglar model example

Sally comes home to find that the burglar alarm is sounding (A = 1). 
Has she been burgled (B = 1), or was the alarm triggered by an 
earthquake (E = 1)? 
She turns the car radio on for news of earthquakes and finds that 
the radio broadcasts an earthquake alert (R = 1).



Burglar model example



Burglar model example

ÅInitial Evidence: The Alarm is sounding

ÅAdditional Evidence: The Radio broadcasts an 
Earthquake warning

the Earthquake `explains away' to an extent the fact that the 
Alarm is ringing.



Undirected Graphical Models

Åknown as Markov random fields (MRFs) or 
Markov networks

ïNot all situations we might want to model have 
such a clear direction to their interactions

ïWhen the interactions seem to have no intrinsic 
direction, or to operate in both directions, it may 
be more appropriate to use an undirected model



Cold Spreading Example

!ƴ ǳƴŘƛǊŜŎǘŜŘ ƎǊŀǇƘ ǊŜǇǊŜǎŜƴǘƛƴƎ Ƙƻǿ ȅƻǳǊ ǊƻƻƳƳŀǘŜΩǎ ƘŜŀƭǘƘ Ὤ, 
your health Ὤ Σ ŀƴŘ ȅƻǳǊ ǿƻǊƪ ŎƻƭƭŜŀƎǳŜΩǎ ƘŜŀƭǘƘ Ὤ affect each 

other.

Suppose that we want to model a distribution over three binary 
variables: whether or not you are sick, whether or not your coworker 
is sick, and whether or not your roommate is sick

No clean, uni-directional narrative on which to base the model.

Undirected model



Undirected Graphical Models

Åa structured probabilistic model defined on an 
undirected graph Ὃ.

ÅFor each clique ὅin the graph, a factor
‰ὅ (also called a clique potential) measures 
the affinity of the variables in that clique for 
being in each of their possible joint states.

ÅThe factors define unnormalizedprobability 
distribution



Cold Spreading Example

a state of 0 indicates poor health



Undirected Graphical Models



The Partition Function

ÅThe normalized probability distribution

ÅComputing Z exactly is usually intractable Č we 
must resort to approximations

ÅThere are often cases that Z does not exist
ïWhen the integral of ὴover their domain diverges.

ï‰ὼ ὼ

the partition functio n



Directed modeling vs. Undirected modeling

ÅDirected models: defined directly in terms of 
probability distributions from the start

ÅUndirected models:  defined more loosely by 
‰functions that are then converted into 
probability distributions.

ïthe domain of each of the variables has dramatic 
effect on the kind of probability distribution

ÅE.g.) ‰ ὼ ÅØÐὦὼȢ

No prob
distribution



Energy-Based Models

ÅUndirected models assume ᶅ●ȟὴ● π

ÅEBM is an example of a Boltzmann distribution

ïmany energy-based models are calledBoltzmann 
machines

Energy-based model (EBM)

energy function



Boltzmann Machine

ÅA Boltzmann machine is a MN on binary 
variables Ὠέάὼ πȟρ of the form

Å the term Boltzmann machine is today most often used to 
designate models with latent variables 

ÅBoltzmann machines without latent variables are more 
often called Markov random fields or log-linear models.



Energy-Based Models



Energy-Based Models 

with Latent Variables

ÅMany algorithms that operate on probabilistic 
models do not need to compute ὴ ●
but only ÌÏÇὴ ●.

ÅFree energy



Separation

Åa set of variables A is separatedfrom another 
set of variables B given a third set of variables 
S if the graph structure implies that A is 
independent from B given S.

which subsets of variables are conditionally independent from each
other, given the values of other subsets of variables?

Åpaths involving only unobserved variables: active
Åpaths including an observed variable: inactive

If two variables a and b are connected by a path involving only 
unobserved variables, then those variables are not separated



D-Separation

Å¢ƘŜ άŘέ ǎǘŀƴŘǎ ŦƻǊ άdependenceΦέ

ÅD-separation for directed graphs

Åa set of variables A is d-separated from 
another set of variables B given a third set of 
variables S if the graph structure implies that 
A is independent from B given S.



D-Separation



D-Separation

Åa and b are d-separated given 
the empty set.
Åa and e are d-separated given c.
Åd and e are d-separated given c.

Åa and b are not d-separated given c.
Åa and b are not d-separated given d.



Separation and D -Separation

ÅSeparation and d-separation tell us only about 
those conditional independences that are implied 
by the graph

ÅNo requirement that the graph imply all 
independences that are present.

ÅContext-specific independences: independences 
that are present dependent on the value of some 
variables in the network.
ïTheses independences are not possible to represent 

with existing graphical notation:



Separation and D -Separation

ÅIn general, a graph will never imply that an 
independency exists when it does not

ÅHowever, a graph may fail to encode an 
independence



Converting between Undirected 

and Directed Graphs
Some models are most easily described using a directed graph, or 
most easily described using an undirected graph.



Converting Directed Models to 

Undirected Models

ÅImmorality: Directed models are able to use 
one specific kind of substructure that 
undirected models cannot represent perfectly

ïOccurs when two random variables a and b are 
both parents of a third random variable c, and 
there is no edge directly connecting a and b in 
either direction.

Add an undirected edge connecting parents

Moralization



Converting Directed Models to Undirected Models

Moralization

Moralized 
graphs



Converting undirected model to 

directed model
Åa directed graph D cannot capture all of the 

conditional independences implied by an 
undirected graph U if U contains a loop of 
length greater than three, unless that loop 
also contains a chord.

Åadding chords to U is known as a chordalor 
triangulated graph,

Triangulation



Converting undirected model to directed model

triangulated graph



Factor Graphs

Ågraphical representation of an undirected model 
that consists of a bipartite undirected graph

ÅResolve an ambiguity in the graphical 
representation of standard undirected model 
syntax

ÅVariable nodes: drawn as circles

ÅFactor nodes: drawn as squares
ïcorrespond to the factors ‰of the unnormalized

probability



Factor Graphs



Sampling from Graphical Models

ÅAncestral sampling 

ïSort the variables ὼ in the graph into a topological 
ordering

ïSample ὼ Ḑὖὼ ȟ

ïsample ὖὼ ὖὥ ὼ ȟ

ï...

ïOnly applicable for directed graphical models



Sampling from Graphical Models

ÅGibbs sampling
ïiteratively visit each variable ὼand draw a sample 

conditioned on all of the other variables,ὖὼȿὼ

ïRepeat the process and resample all n variables 
using the updated values of their neighbors

ïAsymptotically, after many repetitions, this 
process converges to sampling from the correct 
distribution

ïCan draw samples from an undirected graphical 
model



Advantages of Structured Modeling

ÅDramatically reduce the cost of representing 
probability distributions as well as learning 
and inference

ÅExplicitly separate representation of 
knowledge from learning of knowledge or 
inference given existing knowledge



Learning about Dependencies

ÅA good generative model needs to accurately 
capture the distribution over the observed or 
visiblevariables ○.
ïCan use structured learning based on greedy search

ÅIn the context of deep learning, the approach 
most commonly used to model these 
dependencies is to introduce several latent or 
hiddenvariables, ▐.
ïAccomplish feature learning by learning latent 

variables



Inference and Approximate 

Inference

ÅIn a latent variable model, we might want to 
extract features Ὁ▐ȿ○ describing the 
observed variables ○.

ÅTraining based on ML

Inference problems

we must predict the value of some variables given other 
variables, or predict the probability distribution over
some variables given the value of other variables

Intractable Č Approximate inference



Deep Learning Approach to 

Structured Probabilistic Models

ÅDoes not always involve especially deep 
graphical models

ÅEssentially always makes use of the idea of 
distributed representations.

ïTypically have more latent variables than observed 
variables.

ïBy contrast, traditional graphical models usually 
contain mostly variables that are at least 
occasionally observed



Deep Learning Approach to 

Structured Probabilistic Models
ÅDoes not intend for the latent variables to take on any 

specific semantics ahead of time
ïBut, in the context of traditional graphical models, they are 

often designed with some specific semantics in mind
ÅE.g. the topic of a document,

ÅTypically have large groups of units that are all 
connected to other groups of units
ïThe interactions between two groups may be described by 

a single matrix.

ïBut, traditional graphical models have very few connections 
and the choice of connections for each variable may be 
individually designed.



Example: RBM
ÅThe typical deep learning approach to 

graphical models
ÅRepresentation learning accomplished via layers of 

latent variables, combined with efficient interactions 
between layers parametrized by matrices


