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Directed Graphical Model

A Beliefnetworks, Bayesian beliehetworks

A Convenient frameworkor representing
Independence assumptions

D

p(x1,...,2p) = _Hp(ir-a'\pa (1))

N @w) represent theparentalvariables of variabley



The Challenge of Unstructured Modeling

A With probabilisticmodels, we can do many
tasks like

Density estimation

|
I Denoising
.

|

Missing value imputation

I Sampling

These tasks are often more complicated than
classification

Learning probabilistic models requires a complete
understanding of the entire structure of the input






The Challenge of Unstructured Modeling

A Modelinga rich distribution over thousands or millions of
random variables ia challengindask, both
computationally andtatistically

I 32 732 pixel color (RGHBhage

I q binary images of thiorm C p 1t times larger
than theestimated number of atoms in thaniverse

A Tablebased approach

i Representing) e by storing a lookup table with
one probability value pgpossible outcome

i RequiresQ parameters!



Table-Based Model

A Specifying] @ IE Mo over binary variable&
i Takes) ¢ spaceC impractical

I computing a marginaln w :summing ovethe
C states of the other variables



Table-Based Model

A Tablebased model is not feasible because of
I Memory: the cost of storing theepresentation

| Statistical efficiency

A Requirean astronomically largéraining set to fitaccurately, given
an astronomical number of parameters

I Runtime: the cost ofnference

A Computing the marginal distributiol @ or the conditional
distribution (w |w ) require summing across the entire table

I Runtime the cost of sampling

A Samplesomevalue u/- U (0, 1), iteratethrough the table adding t
the probabilityvalues untithey exceedu

A Requiregeading through the whole table in the worst case



Table-based model

A Explicitly model evergossible kind of
interaction between every possible subset of
variables

A The probabilitydistributions we encounter in
real tasks are much simpler than this.

A Usually, most variableésfluence each other
only indirectly



Relay race example

A Modeling the finishing times of a team in a relay
race

I Threerunners: Alice, Bob and Carol

I Modeleachof their finishing times as a continuous
randomvariable

A/ F NBf Qa FAYAaKAnigctoa Y
1 £t A0SQa FTAYAAKAYI (GAY

» We can model the relay race usmg only two interactions:
1 £ AOSQa S FIRS Qdie@AsyzCaroR o6



Structured Probabilistic Model

A Structure
I constrain the nature of the variable interactions

I specify which variables are independent of others,
leading to a structurediactorisationof the joint
probabillity distribution.

AEgN(GOIMEN®) B % wh



Structured probabilistic models

(graphical models)

A Provideaformal framework for modelingnly
directinteractions between randomariables
I Allowsthe models tohave significantlyewer

parameters which can in turn be estimated reliably
from less data

A Reducingcomputationalcost interms of storing the model,
performing inference in the model, amtawing samplefrom
the model

A Graphical models can lbvided into two
categories:

I 1) Directed Graphical Models
A Basedon directed acycligraph

I 2)Undirected Graphical Models
A Based on undirected graphs



Directed Graphical Models

A known as thebelief networkor Bayesian
network

A Definedon variables is defined bya directed
acyclic graphO
I With aset oflocal conditional probability
distributions

A The probability distribution oves:

p(x) = 1Lp(x; | Pag(x;))



Relay Race Example

Alice Bob Carol

0040

p(to, t1,t2) = p(to)p(ty1 | to)p(t2 | t1)

ADiscretizing timed ,6 ando each bediscrete variables
with 100 possiblevalues

AUnstructured model: p(t0,t1,t2) require399,999values
A Structured model: requires a total @D,899 values



Directed Graphical Models

A Whatkinds of information can and cannot be
encodedin the graph?

A DGM

I Can encode onlgimplifying assumptions about which
variables are conditionalywdependent from eaclother

I Onlydefines which variables they are allowexdtakein as
arguments.

A But, DGM

i Cannotencoderthe 8 A dzYLIJGA2Y OKI
running time is independeritom allother factors

AWhere The conditional distributiois now a slightly more
complicated formula using only 1lparameters

I Doesnot place any constraint on how veefineour
conditional distributions




Wet grassexample

One morning Tracey leaves her house esdlisesthat her grass is wet. Is
It due to overnight rain odid sheforget to turn o the sprinkler last night?
Next she notices that the grass of hexighbour Jack, islso wet

Thisexplains awayo someextent the possibility
that her sprinkler was left on, and she concludes

therefore that it has probably been raining R oy
J T

R €{0,1} R =1 means that it has been raining, and 0 otherwise

S € {0,1} S =1 means that Tracey has forgotten to turn off the sprinkler, and 0 otherwise
J €{0,1} J =1 means that Jack’s grass is wet, and 0 otherwise

T €{0,1} T =1 means that Tracey’s Grass is wet, and 0 otherwise



Wet grassexample:
Conditional iIndependence

Conditional independence

P(T|J,R,S)=P(T|IR,SPIIR,S)=PJ|R)
P(JIR,S)=P(J|R) P(R|S)=P(R)

\ 4

P(T,J,R,S)=P(T|R,S)P(J|R)P(R)P(S)




Wet grass example:
Conditional Probabllity Table & Inference

P(R=1)=0.2,p(S=1)=0.1.
pPd=1R=1)=1,pJ0=1R=0)=0.2
P(T=1R=1,S=0=1,p(T=1R=1,S=1) =1,
P(T=1R=0,5=1)=0.9
P(T=1R=0,5=0)=0.

' Inference
! y — = "}T:]..J..R._LST:].
p(;_q = ].IT = ].) = p(b ]ﬂT 1) = EJ’R}( : ' : - )
p(I'=1) 2 srsP(T=1,J.R.D5)

. EJ._R p(J|R)p(T' = 1|R,S = 1)p(R)p(S = 1)
Y rsPUIRPT = 1R, S)p(R)p(S)
_ 2rp(T =1|R,S =1)p(R)p(S = 1)
2 rsP(T =1[R,S)p(R)p(S)
0.9 x 0.8 x0.1+1x0.2x0.1
T 09x08x01+1x02x01+0x08x09+1x02x0.9

= 0.3382



Wet grass example: Inference

p(S=1T=1J=1)
p(I'=1,J=1)
S ep(T=1,]=1,R,S=1)
~ Y rsp(T =1.J=1,R,S)
Y rp(J =1R)p(T =1|R,S = 1)p(R)p(S = 1)
- Yrsp(J =1R)p(T = 1R, S)p(R)p(S)
0.0344
T 0.2144

p(S=1T=1J=1) =

= 0.1604

The probability that the sprinkler is on, given the extra evidence that
Jack's grass is wet, is lower thifwe probabilitythat the grass is wet

given only that Tracey's grass is wet. This occurs since the fact that Jac
grass Is also wet increases the chance that the rain has played a role ir
making Tracey's grass wet.



Burglar model example

B E

N TN

A R

Sallycomes homeo find that the burglar alarm is sounding (A = 1).
Hasshe been burgled (B = Dby, wasthe alarm triggered by an
earthquake (E =1)?

Sheturns the car radio on for news of earthqualkasd findsthat
the radio broadcasts an earthquake alert (R = 1).



Burglar model example

Radio = 1 | Earthquake e e
1 1

0 0 p(B,E,A,R) =p(A|B,E,R)p(B, E, R)

p(B,E,A,R) = p(A|B,E,R)p(R|B,E)p(E|B)p(B)

p(B,E,A,R) = p(A|B, E)p(R|E)p(E)p(B)

Alarm = 1 | Burglar | Earthquake
0.9999 1 1
0.99 1 0
0.99 0 1
0.0001 0 0 p(B =1) = 0.01 and p(E = 1) = 0.000001




Burglar model example

A Initial Evidence: The Alarmdsunding

Sprp(B=1,E,A=1R)

> prrP(B,E,A=1R)
_ 2erP(A=1|B=1E)p(B=1)p(E)p(R|E)
Y prrP(A=1|B,E)p(B)p(E)p(R|E)

p(B=1]A=1) =

~ 0.99

A Additional Evidence: The Radio broadcasts ar

Earthquakewarning
p(B=1A=1,R=1) = 001

the Earthquake "explains away' to an extent the fact that the
# Alarm is ringing.



Undirected Graphical Models

A known asMarkov random field$MRFs) or
Markovnetworks

i Not all situations we might want to model have
such a clear direction ttheir interactions

I When the interactions seem to have no Iintrinsic
direction, orto operatein both directions it may
be more appropriate to use an undirected model



Cold Spreading Example

Suppose that we want to modaldistribution overthree binary
variables: whether or not you are sick, whether or gotir coworker
IS sick, and whether or not your roommate is sick

No cleanuni-directional narrativeon which to base the model.

‘ Undirected model

“““““ |y
your healthQ = | YR @& 2 dzNJ ¢ 2 NJQ afteét eathS | =
other.



Undirected Graphical Models

A a structured probabilistic model definexh an
undirected graphQ

A For each cliqué in the graphafactor
%00 (also called a@lique potentid) measures
the affinity of the variables in thatlique for
being In each of their possible joint states

A The factors definennormalizedorobability
distribution

p(x) = Ileeg o(C)



Cold Spreading Example

02020

h,=0 h,=1
h, =0 2 1
h, =1 1 10

a state of O indicates poor health



Undirected Graphical Models

pla.b.c,d, e.f)

Zl Gap @, D)oy (b, c )(...Jasd(a.. d)e(b,e)0erle, )



The Partition Function

A The normalized probability distribution

1 , N
p(x) = Eﬁ(x) Z = /ﬁf)d?‘i
the partition function

A ComputingZ exactly is usually intractable we
must resort toapproximations

A There are often cases thZidoes notexist
i When the integral of) overtheir domain diverges

T %oWw ')
[ = / 2 dr



Directed modeling vs. Undirected modeling

A Directed models: definedirectly in terms of
orobability distributiondrom the start

A Undirected models:definedmore looselby
%ofunctionsthat arethen converted into
probabillity distributions
I the domain of each of theariableshasdramatic
effect on the kind of probabilitgistribution
AEg%s) &0 Agdo 8

x € R™ x {0, 1}" (1,0,...,0, [0,1,....,0],....[0,0,....1]}

e l l
No prob p(xi = 1) = sigmoid (i) p(x) = softmax(b)
distribution




Energy-Based Models

A Undirected models assuniesit)(e) Tt

Energybasedmodel(EBM)
p(x) = exp(—E\(X))

energy function

A EBM isan example of &oltzmann distribution

I many energybased models are calldébltzmann
machines



Boltzmann Machine

A A Boltzmann machine is a MN on binary
variablesQ € ow {Ttp} of the form

1

Eizi{j Wi Tz T+ -0 T;
Z(w,b)

p(x) =

A the term Boltzmanmachine is today most often used to
designate models withatent variables

A Boltzmanmmachines without latent variables are more
often calledMarkovrandom fields or lodinear models



Energy-Based Models

£)

Eap(@,b) + Eyo(byc)+E,q(a,d) +Epe(b,e) + Egle,f)

E(a.b.c.d, e,

Gap(a,b) = exp (—FE(a,b))



Energy-Based Models
with Latent Variables

A Many algorithms that operate on probabilistic
models do not need to compute o
but onlyl TnC ° .

A Freeenergy

Flx) = — logz exp (—F(x, h))
h



Separation

which subsets of variables are conditionally independent from each
other, given the values of other subsetsvafriables?

A a set of variables A i2paratedfrom another
set ofvariables B given a third set of variables
S If the graph structure implies thatis
iIndependent from B given S.

If two variables a and b are connected byadh involvingonly
unobserved variables, then those variables are not separated

A paths involving only unobservegriablesactive
A paths including an observagriable:inactive



D-Separation

At KS 4R 2aépdodemcedé

A D-separation for directedyraphs

A a set of variables A isskparated from
another setof variables B given a third set of

variables S if the graph structumaplies that
A iIs independent from B given S



D-Separation

O—~O~O
0020
OO

Q/@ @”9“@



D-Separation

A a and b are eéeparated given
the empty set.

A aand e are éseparated given.c

A d and e are eseparated given c.

o

A a and b are not geparated given c.
A aand b are not eseparated given d.



Separation and D -Separation

A Separatiorand dseparation tell us onlgbout
thoseconditional independences that are implie«
by thegraph

A No requirementhat the graph imply all
Independences that are present

A Contextspecifiandependencesndependences
that are present dependent on the valuesiime
variablesn the network.

I Theses independences amnet possible to represent
with existing graphicatotation:



Separation and D -Separation

A In general, a graph will never imply that an
iIndependency exists when it does not

A However, a graph may fail to encode an
iIndependence



Converting between Undirected
and Directed Graphs

Somemodels are moseasily describedsing a directed graph, or
most easily described using andirected graph



Converting Directed Models to
Undirected Models

A Immorality: Directedmodels are able to use
one specific kind of substructure that
undirected modelsannot represenperfectly

I Occurswhentwo random variables a and b are
both parents of d&hird randomvariable ¢ and
there isno edge directly connecting a andrb
either direction

Moralization l

Addan undirected edge connectirmgarents




Convertina Directed Models to Undirected Models

Moralized




Converting undirected model to

directed model
A a directed grapID cannot capture all othe

conditionalindependences implied by an
undirectedgraphU if U contains doop of

length greater than three, unless that loop
also contains ahord

‘ Triangulation

A adding chords tdJ is known as ahordalor
triangulatedgraph




Converting undirected model to directed model

d C

triangulated graph



Factor Graphs

A graphical representation ain undirected model
that consists of a bipartite undirectegtaph

A Resolve an ambiguiin the graphical
representation of standard undirected model
syntax

A Variable nodes: drawascircles

A Factor nodesdrawn assquares

| correspond to the factor%o.of the unnormalized
probability



Factor Graphs

QOO

<5 O




Sampling from Graphical Models

A Ancestral sampling

i Sortthe variableso in the graph into a topological
ordering

" Sampleid D 0 @ h
sampled (@ [0® @ h

I Only applicable fodirectedgraphical models



Sampling from Graphical Models

A Gibbs sampling

I iteratively visit each variable and draw a sample
conditioned on all of thether variables) waw

I Repeat the procesand resam
using the updated values of t

nle ah variables
naieighbors

I Asymptotically, after many repetitions, this
process converges to samplifrgm the correct

distribution

I Can draw samples from an undirected graphical

model



Advantages of Structured Modeling

A Dramaticallyreduce the cost of representing
probability distributions as well akarning
andinference

A Explicitlyseparate representation of
knowledge from learningf knowledgeor
Inference given existingnowledge



Learning about Dependencies

A A good generative model needs to accurately
capture the distribution ovethe observedr
visiblevariableso.

I Can usestructured learning basedn greedy search

A In the context of deepearning,the approach
most commonlyused to model these
dependenciess to introduce several laterdr
hiddenvariables |

I Accomplisifeaturelearning bylearning latent
variables



Inference and Approximate
Inference

A In alatent variable model, we might ward
extractfeaturesO Jso describing the
observed variables.

A Training based on ML

log p(v) = Epp(njw) Hog p(h,v) —log p(h | v)]
/

Inferenceproblems

we must predict the valuef some variables given other
variables, or predict the probability distribution over
some variables given the value of other variables

‘ Intractable C Approximate inference



Deep Learning Approach to
Structured Probabilistic Models

A Doesnot always involve especially deep
graphicalmodels

A Essentiallyalways makes use of the idea of
distributed representations

I Typically have morkatent variables than observed
variables

I By contrast, traditional graphical models usually
contain mostly variablethat areat least
occasionallybserved




Deep Learning Approach to
Structured Probabilistic Models

A Doesnot intend for the latent variable® takeon any
specific semantics ahead wine

I But, inthe context of traditional graphical models, thaye
often designed with some specific semanticsnmd
A E.g. thetopic of a document

A Typicallyhave large groups afnits thatare all
connected to other groups afnits

I Theinteractionsbetween twogroups may be described by
a single matrix.

I But, traditional graphical models havery few connections
and the choice of connections for each variable rnay
iIndividuallydesigned.



Example: RBM

A Thetypical deep learning approach to

graphical models

ARepresentationlearning accomplished vlayers of
latent variables combineadwith efficient interactions
between layers parametrized by matrices



