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Lecture 12: Knowledge Representation and
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(Borrows from slides of Percy Liang, Stanford U.)



Thus far in the course

* Formalization of learning from data (statistical learning theory)
* Language models and language semantics. (examples of unsupervised learning)

* Recommender systemes.

Today: Knowledge representation and reasoning using logic

Reminder: In-class midterm this Thurs. 75 min; closed book (arrive on time!)
(Study guide posted on piazza.)



LOGIC

AND WHITE.

ARE
BLACK AND WHITE.
ARE OLD TV SHOWS.

—CANSBERG

Logic: another thing that
penguins aren’t very good at.
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noun

g-ic

noun: logic

1.

reasoning conducted or assessed according to strict principles of validity.

"experience is a better guide to this than deductive logic"

synonyms: reasoning, line of reasoning, rationale, argument, argumentation
“"the logic of their argument"

. a particular system or codification of the principles of proof and inference.
"Aristotelian logic"

Also basis of digital circuits in computer chips
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Role of logic in Al

* For 2000 years, people tried to codify “human reasoning” and came up with logic.

* Most Al work until 1980s: Build machines that represent knowledge and
do reasoning via logic. “Rule based reasoning.”

* "Learning from data” is popular today, but lacks aspects that were trivial in
the pre-1980s systems (e.g. allow human programmer to easily communicate
his/her knowledge to the system). “How do you teach a deep net to multiply
two numbers?”

* Logical reasoning now seems poised for a comeback.



Goals of logic

* Represent knowledge about the world.

* Reason with that knowledge.



Natural language?

* Adime is better than a nickel. e A penny is better than a nothing.
Knowledge
* Anickel is better than a penny. * Nothing is better than world peace.
R :
* Therefore, a dime is better than a penny. easoning -, Therefore, a penny is better than world peace.

Natural language is tricky!

Use of logic removes ambiguity (similar to computer languages);
but also makes system less flexible. (Will study more flexible versions later.)



Components of any logical system

Different syntax, same semantics

* Syntax
. 2+3 &3+2
* Semantics.
* Reasoning Same syntax, different semantics

3/2 in Python 2.7 vs 3/2 in Python 3.



Propositional Logic (aka Boolean Logic; remember COS 126!)

Syntax:

Propositional symbols (atomic formulas): A, B,C
Logical connectives: —, A,V, —, <

Build up formulas recursively—if f and g are formulas, so are the fol-
lowing:

Negation: —f

Conjunction: fAg

(AV-B)A (mAV B)

Disjunction: fV g

Implication: f — g

Biconditional: f <> g

V-and A and <= are symmetric, like “+” and “times” in arithmetic.



Syntax provides symbols.

No “meaning” yet (semantics)!

Semantics provided by a “Model”
(unrelated to “model” used in machine learning!)

For propositional logic, a model is simply an Sanit'y check: What is # of
assignment to all variables. possible models if there are
(each variable assigned 0 (false) or 1 (true), 3 variables? How about

not both) n variables?




Interpretation function

I(f, w): Given formula f and model w, assigns exactly
one of 1 (True) or O (False) to f.
Build up formulas recursively—if f and g are formulas, so are the fol-
lowing:
e Negation: —f * True iff fis false
True iff both f and g are true
True iff at least one of f, g is true
False iff f is true and g is false.
True iff f and g have the same value (true or false)

Conjunction: fAg

Disjunction: fV g

Implication: f — g

Biconditional: f < ¢



| ‘ S
Formula: f=(-AAB) < C
Model: w={A:1,B:1,C : 0}
Interpretation:
I((-AAB) ¢ C,w) = 1

_— N
Z(~ANAB,w) =0 Z(C,w) = 0|
RN

I(-A,w) =0 |I(B,w)=1|

I(A,w) = 1]




Definition:
M(f) = Set of models w for which I(f, w) = True

</f Formula f compactly represents
M(f) (“Set of possible worlds where
fis true.”)

 Example: For f= AA B

M(f) ={A=1, B=1)}.

Tautology: Formula f such that M(f) = All
possible models. (“True in all possible worlds”)

Example: AV -A.
(True whether A =0 or A=1!)

e Forf=A<— B

M(f) = {A=1, B=1}; {A =0; B =0}

Contradiction: Formula f such that M(f) = Empty
set. (“False in all possible worlds.”)

Example: AA -A.
(False whether A =0 or A=1!)




Knowledge representation via logic Y

Formulae = “known facts ”

Models = all possible “worlds” where
Knowledge base : Set of formulae {f;, f,,..., .} A1l these facts hold

M(KB) = A” pOSS|b|e mOdEIS for fl /\ fz /\ /\ f (Add|ng more facts to KB can 0n|y
shrink set of possible worlds.)

Example: Variables: R, S, C (“Rainy”, “Sunny,” “Cloudy”)

KB: RVSVC; (It is either Rainy or Sunny or Cloudy.”)
R->CA-S; (“If it is Rainy then it is Cloudy and not Sunny.”)
Ce—>=-5 (“If it is Cloudy then it is not Sunny, and vice versa”)

Models for KB: {R=1, S =0, C =1}; {R =0, C=1, S=0}; {R=0, C=0, S=1}.



Satisfiability

Defn: Knowledge-base KB is satisfiable if
M(KB) # @ Defn: KB contradicts formula f if

KB U {f}is not satisfiable

(i.e. there is some assignment to variables
that makes all formulae in KB evaluate to True)

Defn: KB entails formula f (denoted KB F f) if Defn: KB is consistent with
M(KB U {f}) = M(KB). formula f if
(in every world where KB is true, f is also true) M(KB U {f}) is non-empty

(there is a world in which KB is
true and f is also true)

Sanity check: KB entails f iff it contradicts -f.




An example

Example: Variables: R, S, C (“Rainy”, “Sunny,” “Cloudy”)
KB: RVSVC;

R->CA-S§S;

Ce—o-S5

DoesKBF SV C ?

Models for KB: {R=1, S =0, C =1}; {R =0, C=1, S=0}; {R=0, C=0, S=1}.

SV C is truein all these models



An example

Add a variable: U (“Carry an
umbrella”). What common-sense
“facts” can we add about U to the
above KB?

Example: Variables: R, S, C (“Rainy”, “Sunny,” “Cloudy”)

KB: RVSVC;
R->CA-S;
Ce—-S

Al systems till 1980s used such reasoning;
Examples: R > U; S -U; "facts” were added by programmers based
upon introspection.

Decision-making at run-time =
which formulae are
entailed/contradicted/consistent




Recap of logic so far

* Defn of formulae.
e KB = List of formulae. (“Facts about the world”)

* KB can entail or contradict another formula, or be consistent with it.

* To decide which of the three possibilities of prev. line holds, draw up
list of all possible models. (“Truth table method.”)



Truth table method (to check if KB has any model)

* If n variables, can take 2" time. (infeasible for even n =100)
Any faster algorithm?

* Polynomial time algorithm =» P = NP (Famous open problem)

* In practice there are reasonable algorithms that use resolution and
other related reasoning methods.



Resolution procedure to decide satisfiability of a KB
(simplest version; [Davis-Putnam, 1950s])

KB consists only of formulae that are clauses (ie V of variables or negated variables).

(With some work, can convert every KB to this form.)

Warmup: What can we conclude under foll. conditions?

KB has singleton clauses (A), (= A).
HAS NO MODEL (UNSATISFIABLE)!

KB contains clause pairs of form (AVB;V..VB,)and (-AVC; V..VC,)
Every model for KB must make (B, V...VB,VC;V..VC,) TRUE




Resolution procedure to decide satisfiability of a KB
(simplest version; [Davis-Putnam, 1950s])

KB consists only of formulae that are clauses (ie V of variables or negated variables).

(With some work, can convert every KB to this form.)

Claim (won’t prove): Finishes in finite time

While KB nonempty do for every KB and prints correct answer.

{
If KB contains clause pairs of form (A), (- A)
Print (“No Model.”) and STOP. /*WHY?*/
If KB contains clause pairs of form (AVB;V..VB,)and (-AVC,V..VC,)
Add (B,V..VB,VC,V..VC,)toKB. /*WHY?*/
else
Print (“Model exists”) and STOP. /* WHY??*/



Good luck with midterm,
And have a good fall break!



