
Lecture	12:	Knowledge	Representation	and	
Reasoning	Part	1:	Logic

Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

(Borrows	from	slides	of	Percy	Liang,	Stanford	U.)



Thus	far	in	the	course

• Formalization	of	learning	from	data	(statistical	learning	theory)

• Language	models	and	language	semantics.	(examples	of	unsupervised	learning)

• Recommender	systems.	

Reminder:	In-class	midterm	this	Thurs.	75	min;	closed	book	(arrive	on	time!)
(Study	guide	posted	on	piazza.)	

Today:	Knowledge	representation	and	reasoning	using	logic



Also	basis	of	digital	circuits	in	computer	chips
EE206/COS306



Role	of	logic	in	AI	

• For	2000	years,	people	tried	to	codify	“human	reasoning”	and	came	up	with	logic.	

• Most	AI	work	until	1980s:	Build	machines	that	represent		knowledge	and	
do	reasoning	via	logic.	“Rule	based	reasoning.”	

• ”Learning	from	data”	is	popular	today,	but	lacks	aspects	that	were	trivial	in	
the	pre-1980s	systems	(e.g.	allow	human	programmer	to	easily	communicate	
his/her	knowledge		to	the	system).		“How	do	you	teach	a	deep	net	to	multiply	
two	numbers?”	

• Logical	reasoning	now	seems	poised	for	a	comeback.	



Goals	of	logic

• Represent knowledge	about	the	world.	

• Reason with	that	knowledge.



Natural	language?

• A	dime is	better	than	a	nickel.

• A	nickel is	better	than	a	penny.

• Therefore,	a	dime is	better	than	a	penny.

• A	penny	is	better	than	a	nothing.

• Nothing is	better	than	world	peace.

• Therefore,	a	penny is	better	than	world	peace.

Knowledge

Reasoning

Natural	language	is	tricky!	

Use	of	logic	removes	ambiguity	(similar	to	computer	languages);
but	also	makes	system	less	flexible.	(Will	study	more	flexible	versions	later.)	



Components	of	any	logical	system

• Syntax	

• Semantics.

• Reasoning	

Different	syntax,	same	semantics

2	+	3		⇔ 3	+	2		

Same	syntax,	different	semantics

3/2	in	Python	2.7	vs			3/2	in	Python	3.		



Propositional	Logic		(aka	Boolean	Logic;	remember	COS	126!)

Syntax:	

(A _ ¬B) ^ (¬A _B)

⋁ and	⋀ and	⟷ are	symmetric,	like	“+”	and	“times”	in	arithmetic.		



Syntax	provides	symbols.

No	“meaning”	yet	(semantics)!		

Semantics	provided	by	a	“Model”
(unrelated	to	“model”	used	in	machine	learning!)

For	propositional	logic,	a	model	is	simply	an	
assignment			to	all	variables.
(each	variable	assigned	0	(false)	or	1	(true),	
not both)	

Sanity	check:		What	is	#	of	
possible		models if	there	are	
3	variables?	How	about	
n	variables?



Interpretation	function		

I(f,	w):	Given	formula	f	and		model	w,	assigns	exactly	
one	of	1	(True)	or	0	(False)	to	f.	

• True	iff f	is	false
• True	iff both	f	and	g	are	true
• True	iff at	least	one	of	f,	g	is	true
• False	iff f	is	true	and	g	is	false.
• True	iff f	and	g	have	the	same	value	(true	or	false)





Definition:
M(f)	=	Set	of	models	w	for	which	 I(f,	w)	=	True	

• Example:	For		f=		A	⋀ B		

M(f)		=	{	A	=1,	B	=1}.

• For	f	=	A	⟷ B	

M(f)	=	{A=1,	B=1};	{A	=0;	B	=0}					

Tautology: Formula	f	such	that	M(f)	=	All	
possible	models.	(“True	in	all	possible	worlds”)

Example:	A	⋁ ¬A.			
(True	whether	A	=0	or	A=1!)

Contradiction: Formula	f	such	that	M(f)	=	Empty	
set.	(”False	in	all	possible	worlds.”)

Example:	A	⋀ ¬A.			
(False	whether	A	=0	or	A=1!)

Formula	f	compactly represents	
M(f)	(“Set	of	possible	worlds	where	

f	is	true.”)



Knowledge	representation	via	logic

Knowledge	base	:	Set	of	formulae	{f1,	f2,…, fn}
M(KB)	=	All	possible	models	for	f1	⋀ f2	⋀… ⋀ fn

Example:	Variables:		R,	S,	C			(“Rainy”,	“Sunny,”	“Cloudy”)

KB:		R	⋁ S	⋁ C;
R	→	C	⋀ ¬	 S;
C	⟷ ¬		S

(”It	is	either	Rainy	or	Sunny	or	Cloudy.”)
(“If	it	is	Rainy	then	it	is	Cloudy	and	not	Sunny.”)
(”If	it	is	Cloudy	then	it	is	not	Sunny,	and	vice	versa”)

Models	for	KB:	{R=1,	S	=0,	C	=1};	{R	=0,	C=1,	S=0};	{R=0,	C=0,	S=1}.

Formulae	=	“known	facts	”	
Models	=	all	possible	“worlds”	where	
all	these	facts	hold
(Adding	more	facts	to	KB	can	only	
shrink set	of	possible	worlds.)



Satisfiability
Defn:	Knowledge-base	KB	is	satisfiable if	

M(KB)	≠	∅
(i.e.	there	is	some	assignment	to	variables	
that	makes	all	formulae	in	KB	evaluate	to	True)

Defn:	KB	entails formula	f		(denoted	KB	⊨ f)	if
M(KB	∪{f})	=	M(KB).

(in	every	world	where	KB	is	true,	f	is	also	true)	

Defn:	KB	contradicts formula	f	if
KB	∪{f}	is	not	satisfiable

Sanity	check:	KB	entails	f	iff it	contradicts		¬f	.

Defn:	KB	is	consistent	with	
formula	f	if		
M(KB	∪{f})	is	non-empty	
(there	is	a	world	in	which	KB	is	
true	and	f	is	also	true)



An	example

Example:	Variables:		R,	S,	C			(“Rainy”,	“Sunny,”	“Cloudy”)

KB:		 R	⋁ S	⋁ C;
R	→	C	⋀ ¬		S;
C	⟷ ¬		S

Does	KB	⊨ S	⋁ C		?	

Models	for	KB:	{R=1,	S	=0,	C	=1};	{R	=0,	C=1,	S=0};	{R=0,	C=0,	S=1}.

S	⋁	C		is	true	in	all	these	models			✔ 	



An	example

Example:	Variables:		R,	S,	C			(“Rainy”,	“Sunny,”	“Cloudy”)

KB:		 R	⋁ S	⋁ C;
R	→	C	⋀ ¬		S;
C	⟷ ¬		S

Add	a	variable:	U	(“Carry	an	
umbrella”).	What	common-sense	
“facts”	can	we	add	about	U	to	the	
above	KB?		

Examples:			R →		U;		S	→	¬	U;	
AI	systems	till	1980s	used	such	reasoning;
”facts”	were	added	by	programmers	based
upon	introspection.

Decision-making	at	run-time	=	
which	formulae	are	
entailed/contradicted/consistent



Recap	of	logic	so	far

• Defn of	formulae.	

• KB	=		List	of	formulae.	(“Facts	about	the	world”)

• KB	can	entail or	contradict another	formula,	or	be	consistent	with	it.	

• To	decide	which	of	the	three	possibilities	of	prev.	line	holds,	draw	up
list	of	all	possible	models.	(“Truth	table	method.”)	



Truth	table	method	(to	check	if	KB	has	any	model)

• If	n	variables,	can	take	2n time.		(infeasible	for	even	n	=100)	
Any	faster	algorithm?

• Polynomial	time	algorithm	è P	=	NP			(Famous	open	problem)

• In	practice	there	are	reasonable	algorithms	that	use	resolution and	
other	related	reasoning	methods.



Resolution	procedure	to	decide	satisfiability	of	a	KB	
(simplest	version;	[Davis-Putnam,	1950s])	

KB	consists	only	of	formulae	that	are	clauses (ie ⋁ of	variables	or	negated	variables).

(With	some	work,	can	convert	every	KB	to	this	form.)			

Warmup:	What	can	we	conclude	under	foll.	conditions?		

KB	has	singleton	clauses	(A),	(¬	A).	

KB	contains	clause	pairs	of	form	(A ⋁ B1 ⋁ … ⋁ Bn)	and	(¬	A	⋁ C1 ⋁ … ⋁ Cm)

HAS	NO	MODEL	(UNSATISFIABLE)!

Every	model	for	KB	must	make	(B1 ⋁ … ⋁ Bn⋁ C1 ⋁ … ⋁ Cm)	TRUE	



Resolution	procedure	to	decide	satisfiability	of	a	KB	
(simplest	version;	[Davis-Putnam,	1950s])	

KB	consists	only	of	formulae	that	are	clauses (ie ⋁ of	variables	or	negated	variables).

(With	some	work,	can	convert	every	KB	to	this	form.)			

While KB	nonempty	do
{
If KB	contains	clause	pairs	of	form	(A),	(¬	A)

Print (“No	Model.”)	and	STOP. /*WHY?*/
If KB	contains	clause	pairs	of	form	(A ⋁ B1 ⋁ … ⋁ Bn)	and	(¬	A	⋁ C1 ⋁ … ⋁ Cm)

Add		(B1 ⋁ … ⋁ Bn⋁ C1 ⋁ … ⋁ Cm)	to	KB.			/*WHY?*/
else	

Print	(“Model	exists”)		and	STOP. /*	WHY??*/
}

Claim	(won’t	prove):	Finishes	in	finite	time	
for	every	KB	and	prints	correct	answer.	



Good	luck	with	midterm,
And	have	a	good	fall	break!


