What we learned last time

1. Intelligence is the computational part of the ability to achieve gc

¥ looking deeper: 1) its a continuum, 2) its an appearance, 3) it varie:
with observer and purpose

2. We will (probably) bgure out how to make intelligent systems in
our lifetimesjt will change everything

3. But prior to that it will probably change our careers

¥ as companies gear up to take advantage of the economic
opportunities

4. This course has a demanding workdoa

Multli-arm Bandits

Sutton and Barto, Chapter 2

The simplest By N\ Ve
reinforcement learning g
problem

You are the algorithm! (banditl

¥ Action 1 N Reward is always 8

¥ value of action1is q (1) =
¥ Action 2 N 88% chance of 0, 12% chance of 100!
¥ value of action2is g (2)= .88! 0+ .12! 100 =

¥ Action 3 N Randomly between -10 and 35, equiprobable

10 0 q*!(3) 35 q«(3) =
¥ Action 4 N a third 0, a third 20, and a third from {8,9,E, 18}

0 q(4) 20

q4)=

The k-armed Bandit Problen

¥ On each of an inbnite sequencetiofie steps=1, 2, 3, E, !
you choose an actioA from k possibilities, and receive a real-
valuedrewardR

¥ The reward depends only on the action taken;
it is indentically, independently distributed (i.i.d.):

a(a) = E[R¢{|Ar=4a], a" {1,...,k} true value
¥ These true values arenknownl he distribution is unknown
¥ Nevertheless, you must maximize your total reward

¥ You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemm

¥ Suppose you form estimates

Qi(a)! g(a), "a action-value estimates

¥ DebPne thegreedy acticat timet as

A = arg max Qt(a)

¥ If A = A{ then you areexploiting
If Ai &£ A; then you areexploring

¥ You canOt do both, but you need to do both

¥ You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Action-Value Methods

¥ Methods that learn action-value estimates and nothing else

¥ For example, estimate action valuessasiple averages

Q,(a) = sum of rewards whena taken prior to t _ | ;!:11 R;al4 =4
number of times a taken prior to t 4o,

¥ The sample-average estimates converge to the true values
If the action is taken an inbPnite number of times

Iim Q¢(a) = x(a)

N (a)!"

/

The number of times action a
has been taken by time t

I -Greedy Action Selection

¥ In greedy action selection, you always exploit

¥ In!-greedy, you are usually greedy, but with probabilifsou

Instead pick an action at random (possibly the greedy action
again)

¥ This Is perhaps the simplest way to balance exploration and
exploitation

A simple bandit algorithm

Initialize, for a=1to k:
Q(@" 0
N(a" O

Repeat forever:

N(A)" N(A)+1 -
Q(A)" QA)+ g R! Q(A)

A arg maxy Q(a) with probability 1 ! !
a random action with probability !
R " bandit(A)

(breaking ties randomly)

What we learned last time

1. Multi-armed bandidgge a simplibcation of the real problem

1. they have action and reward (a goal), but no input or sequentiality
2. A fundamentaéxploitation-explorattoadeoffarises in bandits

1. !-greedy action select®the simplest way of trading off

3. Learning action valuea key part of solution methods

4. The 10-armed testbdldstrates all

One Bandit Task from .

The 10-amed Testbed

q! (a) ! N(O1 1)
Rt l N(q' (a)’ 1)

a (3)
2 a (5)

Reward @@
distribution

a (6)
Run for 1000 steps
-3 Repeat the whole
thing 2000 times

with different bandit
-4 tasks

I ﬁ!) I I I I
1 2 3 4 5 7 8 9 10

Action

| -Greedy Methods on the 10-Armed Testbt

L P
£=00]
l B
¢ =) (greedy)
Average 0
reward
05
0
| | 1 1 L}
0 250 00 750 OO0
Steps
100% _
80% | | L ey mtaatad s ae sl
e
% W4 £=001
Optimal)
action 0% .
¢ = () (greedy)
N)(f 4
0%
L) | 1 \J L)
0 250 S00 750 100

Steps

What we learned last time

5. Learning as averaging fuadamental learning rule

Averagind learning rule

¥ To simplify notation, let us focus on one action

¥ We consider only its rewards, and its estimate afterl rewards:

Ri+ R+ aaa Ry 1
n! 1

¥ How can we do this incrementally (without storing all the rewarrt

Qn =

¥ Could store a running sum and count (and divide), or equivalen

1;
Qn+1 :Qn+ﬁ Rn! Qn

¥ This is a standard form for learning/update rules:

NewEstimate" OldEstimate + StepSize Target! OldEstimate

Derivation of incremental upda

Ri+ R+ 444 R 1

Qn =

n! 1
1!
Qns1 = — Ri
n,i,=1 "
1 p!l
= — Rpt Ri
n =1 ”
1 p!l
= op Rer(nEDg R
19 %
— ﬁ Rn"'(n! 1)Qn
'S %
= n Rn+ nQn! Qn
1& |

= Qn"’HRn! Qn ,

Averagind learning rule

¥ To simplify notation, let us focus on one action

¥ We consider only its rewards, and its estimate afterl rewards:

Ri+ R+ aaa Ry 1
n! 1

¥ How can we do this incrementally (without storing all the rewarrt

Qn =

¥ Could store a running sum and count (and divide), or equivalen

1;
Qn+1 :Qn+ﬁ Rn! Qn

¥ This is a standard form for learning/update rules:

NewEstimate" OldEstimate + StepSize Target! OldEstimate

Tracking a Nonstationary Probler

¥ Suppose the true action values change slowly over time

¥ then we say that the problem ronstationary
¥ In this case, sample averages are not a good idea (Why?)

¥ Better is an Oexponential, recency-weighted averageO:

Quit = Qu+! Ry! Q,

#n |
=@ 1)"Q;+ !(@!)" 'R,
1=1
where! Is a constant, step-size parameter0O< ! " 1

¥ There Is bias due t®@); that becomes smaller over time

Standard stochastic approximati
convergence conditions

¥ To assure convergence with probability 1:

INCOER. and 12 < |
n=1 n=1
1
¥eg,'n= -
if'n=n"P »p! (0,1
Yoot '.= & then convergence is

2

>

at the optimal rate:
O/ n)

Optimistic Initial Values

¥ All methods so far depend oQ:(a) ,I.e.,they are bialsed
So far we have use®@i1(a) =0

¥ Suppose we initialize the action valuwggimisticalli@.(a) =5), !
e.g.,on the 10-armed testbed (with=0.1)

100% —
optimistic, greedy .
80% - Q;=51=0
% 60% — realistic, e-greedy

Optimal Q;=0,!=01
action 40%-

20% —

0% — I T T T 1
0 200 400 600 800 1000

Upper ConbPdence Bound (UCB) action select

¥ A clever way of reducing exploration over time
¥ Estimate an upper bound on the true action values

¥ Select the action with the largest (estimategper bound

an
: log t
A; = argmax Qi(a)+cC
a N¢(a)
15F E:‘:\:J,i! -g‘ﬁ;ﬂ'lim"’wf THVWW#\‘gmf\,,"\r.nluﬂrw)ﬂ,u“r\'\f;\i\/\“'f\yfW.’l’wlh'vl‘)fﬁ"mr‘fh
\ w., i |
Wﬂ%‘fm | .greedy ! =0.1
T
Average &
reward
05
°r ¥

1 1 1 J
0 250 500 750 1000

Steps

Gradient-Bandit Algorithms

¥ Let Hi(a) be a learnegreferencéor taking actiom

th(a)
Pr{At=a} = +—
b=1

Hii1 (@) = Hy(a) + ! | R;

1 | t 100%r
I@t = { Ri

. 80%

1=1 °

% 60%F

Optimal

action 0%}

20%}
0%},

eHt(b) -

= 1¢(a)
! F@t -ﬂ{At: a} I t(a) , "a
I =01 —
Wne
=04
f e without baseline
7{,/3‘“
0 2150 5IOO 7150 1600

Steps

Derivation of gradient-bandit algorith

In exactgradient ascent

OE [Ri]

Hea () = Hh(@) + a6, @
where: !
E[R:] = mt (b) qi (b),
b
OE[R] %, i i
' !
OH: (3) = OH, (3) i Tt (b)q (b)
! 8 ¢ (b)
= b q (b) 9H(2)
_ 8 %) m (b)
= q(b)! X 9 (2)’

b

&
where X; does not depend ot, because | 5y Htg = 0.

S R
- Mt b - Il
! " #n
=) a) X o)
— E%"CI! (At) I Xt#!lul_: (At)/ " t (At)%
$ H@)

) = AL (A
_E R! R !!Ht((Aa))/"t(At) |

where here we have chosen X; = R and substituted Ry for g (A¢),
which is permitted because E[R;}JA{] = q (At).#

For now assume: :H:EZ; ="¢(b) 15=p! "t(a) . Then:

E "R I R_ n A) 1 | " / n A |
— . = M a
&Il t _t#llt(t) a"/\'[#I t() 1:(t)

" _#" #
Hiv1(a) =Hi(a) +# R! R la=a ! "t(a) , (from (1), QED)

Thus it remains only to show that

I8 I "
ZHIES; = m(b) lap! m(a) .

Recall the standard quotient rule for derivatives:

0 #f(x)$_ HOgx) 1 f(x) -9

ox g(x) g(x)?

Using this, we can write...

! #f(x)$!f(x) (x) — f (x) 1 g(x)

Quotient Rule:

X g(x) g(x)2
") 1,
@ @,

! eht(b)

Hi(a) K en(©

#

n |
I eht (b) k he(c) | ht (b) | k:l aht (c)
o= €M1 e <

H =1 TH

LGS) , oy (Q-R)
=1 eht(c)

_ la:beht(a)¢ ‘ézl ht(c) | /eht(b)eht(a) (L& = o)

Ppm «] /lz I X

c=1 €M

_ ,,la:beht(b) e eht(b)eht(a)n/

= o8 | % Ys

c=1 eh(c) lézl eht(c)

Lb"g (0) ! "1(6)"4(8)
=" () La=p! "(8) - (QED)

Summary Comparison of Bandit Algorithr

1.5¢ :
UCB greedy with

optimistic
initialization
' =0.1

1.4+

Average e-greedy _—

reward SN
gradient\
over prst 1ol bandit \
1000 steps
1.1+
1-

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4

!/C/Qo

Conclusions

¥ These are all simple methods
¥ but they are complicated enoughNwe will build on therr
¥ we should understand them completely
¥ there are still open guestions
¥ Our brst algorithms that learn from evaluative feedback
¥ and thus must balance exploration and exploitation

¥ Our Prst algorithms that appear to have a doal
Nthat learn to maximize reward by trial and error

Our brst dimensions!

¥ Problems vs Solution Methods

Bandits?
¥ Evaluative vs Instructive

Problem or Solutio

¥ Assoclative vs Non-associlative

Problem space

Single State = Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State = Associative

Instructive
feedback

Evaluative Bandits
ii=121elers1¢0€ | (Function optimization)

Problem space

Single State = Associative

Instructive Supervised
feedback learning

Evaluative Bandits
ii=121elers1¢0€ | (Function optimization)

Problem space

Single State = Associative

Instructive Averagin Supervised
feedback d9ing learning
Evaluative Bandits

ii=121elers1¢0€ | (Function optimization)

Problem space

Single State = Associative

Instructive . Supervised
Averaging _
feedback learning
Evaluative Bandits ASSOCIatrI‘VG
i=1=le|er:10’€ | (Function optimization) Searc
(Contextual bandits)

