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The problem

¥ Learning to predict the outcome of a way
of behaving

¥ from fragments of its execution

¥in a practical, scalable way

I Off-policy TD learning with linear functior
approximation



Outline

¥The promise of TD learning

¥ Value-function approximation

¥ Gradient-descent methods

¥ Objective functions for TD

¥ Gradient-descent derivation of new algoritt
¥ Proof of convergence (sketch and remarks
¥ Empirical results

¥ Conclusions



What Is
temporal-difference learning

¥ The most important and distinctive idea in
reinforcement learning

¥ A way of learning to predict,
from changes in your predictions,
without waiting for the Pnal outcome

¥ A way of takinqadvantage of state
INn multi-step prediction problems

¥ Learning a guess from a guess



Examples of TD learning
opportunities

¥ Learning to evaluate backgammon positi
from changes In evaluation within a gam

¥ Learning where your tennis opponent wil
hit the ball from his approach

¥ Learning what features of a market indic:
that it will have a major decline

¥ Learning to recognize your friendOs face
crowd



Function approximation

¥ TD learning is sometimes done in a table
lookup context - where every state Is
distinct and treated totally separately

¥ But really, to be powerful, we must
generalize between states

¥ The same state never occurs twice

For example, in Computer Go,
we use 10 parameters to learn about 1@ positions




Advantages of TD method:
for prediction

1. Data efPcient
Learn much faster on Markov problems

2. Cheap to implement
Require less memory, peak computation

3. Able to learn from iIncomplete seguences
In particular, able to learnff-policy



Off-policy learning

¥Learning about a policy different than the
policy being used to generate actions

¥ Most often used to learn optimal
behaviour from a given data set, or fror
more exploratory behaviour

¥ Key to ambitious theories of knowledge
and perception as continual prediction
about the outcomes of many options
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Value-function approximatiol
from sample trajectories

states
< \ cutcome  ¥True values:

\ V(s) = E[outcomgs]
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¥Estimated values:
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’ ¥Linear approximation:
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for states



Value-function approximatiol
from sample trajectories

feature parameter

vector  vector ¥True values:

Sstate O- 01
1 02 V (s) = E[outcomds]
05 = 24+0+5= .
§ X 85 2TOTS=3  ¥Estimated values:
o |4 Vi(s) ! V(s), IR

¥Linear approximation:
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modibable parameter vector

feature vector
for states



From terminal outcomes to
per-step rewards

state trajectory
o

o

Q

o



From terminal outcomes to
per-step rewards

state trajectory ¥True values:
Q6 " onl
1 | ¢
05 V(s)= E I'ri |Sp = S
ewards 1 targ_et values (returns) t=0
d 4 = sum of future
5 rewards until end
of episode, or until discount rate,
o . . .
1 discounting horizon or 111
1



TD methods operate on
Individual transitions

trajectories transitions

Training set is now a bag of transitio
Select from them I.1.d.
(Independently, identically distribute

Sample transition: (s,r,s’) or (!,r,!")
TD(0) algorithm: !'=r+"# $! # $
L1 1+ "#$



TD methods operate on
Individual transitions

transitions

ds - distribution of prst states
bs - expected reward given ()I 1I 11 21 11 jI 21 oI 1I
Pssa- prob of next statesQyivens

Training set iIs now a bag of transitic
P alhdkdd Select from them i.i.d.
are linke (independently, identically distribute

Sample transition: (s,r,s’) or (!,r,!")
TD(0) algorithm: !'=r+"# $! # $
L1 1+ "#$



Off-policy training

trajectories transitions
ds
X > 4]
Pss6
1{( P andd are no longer
linked

TD(0) may diverge!




BairdOs counter-example

¥ P andd are not linked
¥ dis all states with equal probability
¥ P is according to this Markov chain:

1 (7)+2! (3)
r=20
% on all transitions

1% terminal
999%, State




TD can diverge:
BairdOs counter-example

10 1 (1) D! (5) /@ /_@
Parameter ” | K ﬁ
values, ! (i) AN L
(log scale,
broken at! 1) N @ K
107 \K

] I I I I
0 1000 2000 3000 4000 5000

Iterations (k)

a=0.01 ~7=0.9¢ 17=(1,1,111101)  deterministic updates



TD update:

TD bxpoint:

TD(0) can diverge:
A simple example

(U—

= e S —H S

= 0+2#—#

= #
A = «adop

= af Diverges!
1 =0



Previous attempts to solve
the off-policy problem

¥ Importance sampling
¥ With recognizers
¥ | east-squares methods, LSTD, LSPI,iLS
¥ Averagers
¥ Residual gradient methods



Desiderata:
We want a TD algorithm tha

¥ Bootstraps (genuine TD)

¥Works with linear function approximation
(stable, reliably convergent)

¥ s simple, like linear TD N O(n)
¥ Learns fast, like linear TD
¥ Can learn off-policy (arbitrar andd)

¥ Learns from online causal trajectories
(no repeat sampling from the same state)
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Gradient-descent learning
methods - the recipe

1. Pick an objective functioh(!) ,a
parameterized function to be minimized

2. Use calculus to analytically compute the
gradient Vy.J(0)

3. Find a Osample gradie#tQ);(¢)  that yo
can sample on every time step and whose
expected value equals the gradient

4. Take small steps 18 proportional to the
sample gradient:

o1 0" a# ()



Conventional TD iIs not the
gradient of anything

l 0 = a0

TD(0) algorithm: e g # S

Assume there Is a J such thati;li = #$

Then look at the second derivative:

0?3 _ 0(d¢i) _ | Nt
3(9j6(9i_ @(91' —(7¢j! ¢J)€bl |2J . |2J
) g sy |

. i_"j I

Real 29 derivatives must be symmetric
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Gradient descent for TD:
What should the objective function bt

¥ Close to the true values?

Mean-Square MSE(!) = ds(Vi(s)! V(s)°

S \
Error True value

— n n2
- VitV D function

¥ Or close to satisfying the Bellman equati

Mean-Square - " ,
BellmarkError MSBE(!) = !''Vi" TV I

where T Is the Bellman operator dePned
V. = r+!PV
= TV



Value function geometry

Previous work on

gradient methods for TD Ay T tak .
minimized this objectivefa___ -7 N\ Ty takes you outsiae
(Baird 1995, 1999) @@b L the space
e | projects you back
\\\ 4|:¥ INto It
N " TV,
V! ‘\ \\\
\\ ___ R\\/\SPBE -->\ | |
I D = ~____— Better objective fn?
The space spanned by the feature vectors, V! = | TV!
weighted by tge:stczlaitaeg\zi(sji)tation distribution Isthe TD Dx-point

Mean Squarerojectedellman Error (MSPBE)




Backward-bootstrapping example

(Dayan 1992)

Clearly, the true values are
V(B)=1 V(C)=0
V(A)=0.5

But if you minimize the

expected TD error:

(') = E[*],

then you get the solution
V(B)=0.75 V(C)=0.25
V(A)=0.5

Even In the tabular case (no F




Backward-bootstrapping example

The two OAO states look th

/7N same, they share a single

b .4\—>1 feature and must be given t
C By same approximate value
AT
L e The example appears just |
\ ® , @ """" - the previous, but now the
\,’ ) minimum mean-squared

Bellman erra@olution Is
V(B)=0.75 V(C)=0.25
V(A)=0.5
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Three new algorithms

¥ GTD, the originalgradient TD algorithm
(Sutton, Szepevari & Mael, 2008)

¥ GTD-2, a second-generation GTD
¥ TDC, TD with gradient correction

¥ (also GQ( ) and Greedy-GQ)



Derivation of the TDC algorithm

s ¢
!!:!}""!J(!) = !}""!#V!! TV #5 | l
2 i | " 4, $ | -
= | i" o E[#$]E $$I 1E[#$]
= 1 .E[#$]) E g5 E[#$]
" 0%
= vE ST % $1E 88 TE[HY
(b " #,
| "E $(%§' $) E $$'  E[#9]
% " . #& " H o1
= 1" O $* ' E $$ E $$° E [#3]
= "E[#9]! %E"$#$' E $$ '1E[#$]
$ "E[#Y]! "WE $"$ - |
| | This Is the trick!
(sampling) $ "#$! "%$$ w w!" "is asecond

set of weights



The completelT D with gradier
correctio(TDC) algorithm

¥on each transition "' S

b

¥ update two parameters with gradient
.~~~ correction

L H("#$)" (%S $ w)

w! w+1("" # w#

¥ where, as usual
=r+"# S #S



The completelT D with gradier
correctio(TDC) algorithm

¥on each transition "' S

b

¥ update two parameters

1L+ " " "%$ '
Wi W T @R sumate of e

TD error (1) for
¥Where’ as usual " the current statd
l=r+"#$1 #%
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Stability and convergenct

There exists a projected-Bellman-error
objective function

(') = |

,/' vector of values, one per state

v, T H TV,

2
D

generalized Bellman

such that operator
projection back
E[ | "] #$%. J(") into the space of

representable
functions

which guarantees convergencelg)=0
(under step-size conditions)



Convergence theorems

¥ For arbitraryP andd

¥ All algorithms converge w.p.1 to the TD bx-poi
E"1r 0

¥ for GTD and GTD-2
="

¥ forTDC

=0, #> max(0, $rmax )



A little more theory

1" = r+$liE T H
= ' ($# " #)#H+ r#
= L ! |
#($# #) | T.rg
E['!] ! " E ##" $#) | + E[r#]
I | | |
" [ v convergent If
EfM ] Al T b Ais pos. def.
therefore,at A!" = Db o
the TD bxpoint: TR LSTD computes this directly
1 C=E Il'’
| é" ' MSPBE = ! A'C 1(AI! | b) covariance

always pos. def. matrix
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Random walk problem (on-polic

~— O ———OE—

Start

3 different feature representations.
¥5 tabular features
¥5 inverted-tabular features
¥3 features (genuine FA)



Boyan chain problem (on-policy

Boyan 1999

. = -3 -3 -3
0 0 0 0
0 0 O O
1 0.75 0.5 0
0 0.25 0.5 1

13 states, 4 features
Exact solution possible



RMSPBE

RMSPBE

16 1

A2 1

.08 1

04 1

14 1

A1

.07

04 1

.00

Summary of empirical results
on small problems

Random Walk - Tabular features
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Random Walk - Inverted features

GTD
TDC\ \ GTD2
TD
0 250 5
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00

Boyan Chain
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ié ; GTD
/ TD2
= TDC TDC
o TD —
0 50 10

0
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TD, TDC > GTD-2 > GTD
Sometimes TD >TDC



Computer Go experiment

L E[l 11p]!

0.8 =

¥ Learn a linear value
function (probability of
winning) for 9x9 Go
from self play 0]

04 1

¥ One million features,
each corresponding to i
template on a part of >z SO
the Go board TOC

0 f f f f f i
.000001 .000003 .00001  .00003 .0001 .0003 .001

¥ An established |
experimental testbed




Ofti-policy result:
BairdOs counter-example

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

&"! &#! &$! &9%0! al

Gradient algorithms converge. TD diverges.



Further results with new
gradient-descent m2thods

¥ Convergence with nonlinear function
approximators (e.g., neural networks)

¥ Extensions to a very general form B GQ(
action values (Q)

eligibility traces with state-dependent

state-dependent termination function
arbitrary behaviour policy

¥ First convergence result for the control ca
(changing target poligy) b Greedy-GQ



Specibc conclusions

¥ TDC is roughly the same efbciency as
conventional TD on on-policy problems

¥and IS guaranteed convergent under gene
off-policy training as well

¥ the key ideas appear to extend quite broac



General conclusions

¥ The new gradient TD algorithms are a
breakthrough in RL, solving two open probs

convergent O(n) off-policy learning
nonlinear TD

¥Function approximation in RL Is now nearly
straightforward as supervised learning

the curse of dimensionality is broken

general learning from interaction is now practical

¥ Learning rate can probably still be improvec
there are yet new algorithms coming



