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The Beta-Binomial Model
Problem Definition

problem definition

consider a series of N coin tosses

we would like to infer the probability θ ∈ [0, 1] that a coin shows up
heads, given a series of observed coin tosses

in this case we consider the continuous random variable θ

N.B.: in the previous lesson we inferred a distribution over a discrete RV
h ∈ H drawn from a finite space
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The Beta-Binomial Model
Likelihood

for each i-th coin toss we have a discrete RV Xi ∼ Ber(θ), where Xi = 1 represents
”heads” and Xi = 0 represents ”tails”

the RV θ ∈ [0, 1] represents the probability of heads, i.e.

θ = PX (X = 1|θ)

since we assume to observe a set of iid1 trials D = {x1, ..., xN} the likelihood
function is

p(D|θ) =
N∏
i=1

Ber(xi |θ) =
N∏
i=1

θI(xi=1)(1− θ)I(xi=0) =

= θN1(1− θ)N0

where N1 =
∑N

i=1 I(xi = 1) is the number of observed heads, and

N0 =
∑N

i=1 I(xi = 0) is the number of observed tails

N1 and N0 are called the counts, one has N = N1 + N0

1Independent and Identically Distributed
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The Beta-Binomial Model
Sufficient Statistics

given that the likelihood function is

p(D|θ) = θN1(1− θ)N0

all we need to specify it are the counts N1 and N0

in this case s(D) = (N1,N0) are called the sufficient statistics of the data: all we
need to know about D to infer θ

more formally s(D) is a sufficient statistics for the data D if

p(θ|D) = p(θ|s(D))

in this example, another sufficient statistics is s(D) = (N,N1) (since N0 = N −N1)
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The Beta-Binomial Model
Likelihood

if we consider N1 (the number of observed heads) as a RV

N1 ∼ Bin(N, θ)

with the binomial distribution

Bin(N1|N, θ) =

(
N1

N

)
θN1(1− θ)N0

hence if we consider the data D′ = (N1,N0), we have

p(D|θ) ∝ p(D′|θ) ∝ θN1(1− θ)N0 ∝ Bin(N1|N, θ)

since
(
N1
N

)
can be considered as a constant which does not depend on θ

here is the reason for the ”binomial” part of the name beta-binomial model
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The Beta-Binomial Model
Prior

we need a probability prior for θ which has support over [0, 1]

given that
p(D|θ) = θN1(1− θ)N0

if we had a prior of the same form, i.e.

p(θ) ∝ θγ1(1− θ)γ0

we could easily evaluate the posterior as

p(θ|D) ∝ p(D|θ)p(θ) ∝ θN1(1− θ)N0θγ1(1− θ)γ0 = θN1+γ1(1− θ)N0+γ0

when the prior and the posterior have the same form, we say that the prior is a
conjugate prior for the corresponding likelihood

in the case of the Bernoulli, the conjugate prior is the beta distribution

Beta(θ|a, b) ∝ θa−1(1− θ)b−1

here is the reason for the ”beta” part of the name beta-binomial model
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The Beta-Binomial Model
Prior

hence we select the conjugate prior

p(θ) = Beta(θ|a, b) ∝ θa−1(1− θ)b−1

in general the parameters π of the prior are called hyper-parameters, we can set
them in order to encode our prior beliefs

in this case π = (a, b)

for instance, given the beta distribution has mean m and standard deviation σ

m =
a

a + b
σ =

√
ab

(a + b)2(a + b + 1)

if we want to represent our prior belief that θ has mean m = 0.7 and σ = 0.2, we
can use these equations and compute a = 2.975 and b = 1.275

if we know ”nothing”, we can use a uniform prior by setting a = b = 1 in order to
have p(θ) = Unif(0, 1)

homework: ex 3.15 and ex 3.16
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The Beta-Binomial Model
Posterior

the posterior is obtained as a beta-binomial model

p(θ|D) ∝ p(D|θ)p(θ) ∝ Bin(N1|θ,N0 + N1)Beta(θ|a, b) ∝

∝ θN1(1− θ)N0θa−1(1− θ)b−1 = θN1+a−1(1− θ)N0+b−1

hence we have
p(θ|D) ∝ Beta(θ|N1 + a,N0 + b)

N1 and N0 are called the empirical counts

the hyper-parameters a and b are called the pseudo-counts

the pseudo-counts a and b play in the prior the same role that the empirical counts
N1 and N0 play in the likelihood

the strength of the prior, is given by the equivalent sample size α0 = a + b which
is the sum of the pseudo-counts

α0 plays a role analogous to N = N1 + N0
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The Beta-Binomial Model
Posterior

α0 = 4, N = 20 α0 = 7, N = 24

strong prior due to a = 5 > b = 2

Luigi Freda (”La Sapienza” University) Lecture 4 January 27, 2018 14 / 38



The Beta-Binomial Model
Sequential Posterior - Online Learning

let’s see if updating the posterior sequentially is equivalent to updating in single batch

first sequence: D′ with sufficient statistics N ′1,N
′
0 (N ′ = N ′1 + N ′0 )

second sequence: D′′ with sufficient statistics N ′′1 ,N
′′
0 (N ′′ = N ′′1 + N ′′0 )

overall: D , D′ ∪ D′′, N1 , N ′1 + N ′′1 and N0 , N ′0 + N ′′0

batch mode

p(θ|D) = p(θ|D′,D′′) ∝ Bin(N1|θ,N0 + N1)Beta(θ|a, b) ∝ Beta(θ|N1 + a,N0 + b)

sequential mode

1 first sequence posterior: p(θ|D′) ∝ Beta(θ|N ′1 + a,N ′0 + b)

2 second sequence posterior: p(θ|D′,D′′) ∝ p(D′′|θ)︸ ︷︷ ︸
lihelihood forD′′

× p(θ|D′)︸ ︷︷ ︸
prior for D′′ based on D′

∝

∝ Bin(N ′′1 |θ,N ′′0 + N ′′1 )Beta(θ|N ′1 + a,N ′0 + b) ∝

∝ Beta(θ|N ′1 + N ′′1 + a,N ′0 + N ′′0 + b) ∝ Beta(θ|N1 + a,N0 + b)
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The Beta-Binomial Model
Sequential Posterior - Online Learning

we have written the following equation by using intuition

p(θ|D′,D′′) ∝ p(D′′|θ)︸ ︷︷ ︸
lihelihood forD′′

× p(θ|D′)︸ ︷︷ ︸
prior for D′′ based on D′

but this can be shown as follows

p(θ|D′,D′′) =
p(θ,D′′|D′)
p(D′′|D′) =

p(D′′|θ,D′)p(θ|D′)
p(D′′|D′)

note that p(D′′|θ,D′) = p(D′′|θ) since D′′ and D′ are independent

hence we obtain the first equation above

N.B.: the above equation shows that Bayesian inference is well-suited for online learning
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The Beta-Binomial Model
Posterior Predictive

let’s revise the beta distribution

X is a continuous RV with values x ∈ [0, 1]

X ∼ Beta(a, b), i.e. X has a beta distribution

Beta(x |a, b) =
1

B(a, b)
xa−1(1− x)b−1

requirements: a > 0 and b > 0

the beta function is

B(a, b) ,
Γ(a)Γ(b)

Γ(a + b)

mean E[X ] = a
a+b

mode a−1
a+b−2

variance var[X ] = ab
(a+b)2(a+b+1)

N.B. the above equations will be used in the following slide
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The Beta-Binomial Model
Posterior Mean and Mode

θMLE = arg max
θ

p(D|θ) = arg max
θ

[
θN1(1− θ)N0

]
= N1

N
(homework: ex 3.1)

posterior mode:

θMAP = arg max
θ

p(θ|D) = arg max
θ

Beta(θ|N1 + a,N0 + b) =
a + N1 − 1

a + b + N − 2

posterior mean:

E[θ|D] =

∫ 1

0

θp(θ|D)dθ =
a + N1

a + b + N
=

a + N1

α0 + N

prior mean:

E[θ] =

∫ 1

0

θp(θ)dθ =

∫ 1

0

θBeta(θ|a, b)dθ =
a

α0

where a and α0 respectively play the role of N1 and N
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The Beta-Binomial Model
Posterior Mean and Mode

θMLE = N1
N

θMAP = a+N1−1
a+b+N−2

E[θ|D] = a+N1
α0+N

prior mean: E[θ] =
∫
θp(θ)dθ = m1 =

a

α0

the posterior mean can decomposed as

E[θ|D] =
m1α0 + N1

α0 + N
= m1

α0

α0 + N
+

N

α0 + N

N1

N
= λm1 + (1− λ)θMLE

were λ ,
α0

α0 + N

the weaker the prior, the smaller λ, the closer E[θ|D] to θMLE , hence

lim
N→∞

E[θ|D] = θMLE
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The Beta-Binomial Model
Posterior Predictive

now let’s focus on prediction of future data

the posterior predictive is

p(x̃ = 1|D) =

∫ 1

0

p(x̃ = 1, θ|D)dθ =

∫ 1

0

p(x̃ = 1|θ,D)p(θ|D)dθ =

(data iid, x̃ independent from D) =

∫ 1

0

p(x̃ = 1|θ)p(θ|D)dθ =

=

∫ 1

0

θBeta(θ|N1 + a,N0 + b)dθ = E[θ|D]

here we have used the Bayesian procedure of integrating out the unknown
parameter

if we reconsider the above equation

p(x̃ |D) =

∫ 1

0

p(x̃ |θ)p(θ|D)dθ =

∫ 1

0

Ber(x̃ |θ)p(θ|D)dθ

and we plug-in2 θ̂ = E[θ|D] we obtain p(x̃ |D) = Ber(x̃ |E[θ|D])

2recall the plug-in approximation p(θ|D) ≈ δθ̂(θ)
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Overfitting
The Black Swan Paradox

let’s consider the plug-in approximation with θMLE = N1/N, we obtain

p(x̃ |D) ≈ Ber(x̃ |θMLE )

the MLE estimate performs very bad with small datasets

for instance, suppose we observed N1 = 0 and N0 = 3, in this case θMLE = 0 and
we predict that heads is impossible

this is called the zero count problem or sparse data problem

this problem is analogous to the black swan paradox: Western conception that all
swans were white; black swans were discovered in Australia in the 17th Century
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Overfitting
The Black Swan Paradox

now let’s see the same problem in a Bayesian perspective

assume a beta prior p(θ) = Beta(a, b) with a = b = 1 (uniform prior)

as already computed

p(x̃ = 1|D) = E[θ|D] =
N1 + 1

N1 + N0 + 2

this justifies the common practice of adding 1 to the counts (add-one smoothing)

in this case even if N1 = 0 and N0 = 3 we have p(x̃ = 1|D) = 1/4 6= 0

Luigi Freda (”La Sapienza” University) Lecture 4 January 27, 2018 24 / 38



Outline

1 The Beta-Binomial Model
Problem Definition
Likelihood
Prior
Posterior
Posterior Predictive
Overfitting and the Black Swan Paradox

2 The Dirichlet-multinomial
Problem Definition
Likelihood
Prior
Posterior
Posterior Predictive

Luigi Freda (”La Sapienza” University) Lecture 4 January 27, 2018 25 / 38



The Dirichlet-Multinomial
problem definition

problem definition

consider a series of N dice rolls

the dice has K faces

we would like to infer the probability θj ∈ [0, 1] that the j-th dice
face shows up, given a series of observations

in this case we have a continuous random variable θ = (θ1, ..., θK )
with θj ∈ [0, 1] and

∑K
j=1 θj = 1
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The Dirichlet-Multinomial
Likelihood

suppose we observe N dice rolls

for each i-th dice roll we have a discrete RV Xi ∼ Cat(θ), where Xi = j means
j-the face have shown up

the dataset is D = {x1, ..., xN} where xi ∈ {1, ...,K} for i ∈ 1, ...,N

since data is assumed iid, the likelihood function is

p(D|θ) =
N∏
i=1

Cat(xi |θ) =
N∏
i=1

K∏
j=1

θ
I(xi=k)
j =

K∏
j=1

θ
Nk
j

where Nk =
∑N

i=1 I(xi = k) is the number of times face k is observed

this likelihood function is proportional to the multinomial distribution

Mu(N1, ...,NK |N,θ) =

(
N

N1...NK

)
K∏
j=1

θ
Nk
j

since the multinomial coefficient
(

N
N1...NK

)
does not depend on θ
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The Dirichlet-Multinomial
Prior

the RV θ = (θ1, ..., θK ) lives in a K -dimensional probability simplex SK

SK = {θ ∈ RK : θj ∈ [0, 1],
K∑
j=1

θj = 1}

we need a prior that (i) supports the probability simplex and (ii) ideally is
conjugate for the likelihood (prior and posterior have the same form)

the Dirichlet distribution satisfies both criteria

Dir(θ|α) =
1

B(α)

K∏
j=1

θ
αj−1

j I(θ ∈ SK )
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The Dirichlet-Multinomial
Posterior

we obtain the posterior as usual

p(θ|D) ∝ p(D|θ)p(θ) ∝
K∏
j=1

θ
Nk
j θ

αk−1
j =

K∏
j=1

θ
Nk+αk−1
j ∝ Dir(θ|α1+N1, ..., αK+NK )

where the αj are the pseudo-counts and the Nj are the empirical counts

α0 ,
∑K

j=1 αj is the equivalent sample size of the prior and determines its
strength
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The Dirichlet-Multinomial
Posterior Mean and Mode

the mode of the posterior can be derived by using a Lagrange multiplier

we want to maximize f (θ) = log(p(θ|D)) subject to g(θ) , 1−
∑N

j=1 θj = 0

let’s define the Lagrangian function

l(θ, λ) , f (θ) + λg(θ)

where λ is the Lagrange multiplier

in order to optimize f (θ) subject to the constraint g(θ) = 0 we have to impose

∂l

∂λ
= 0

∂l

∂θj
= 0 for j ∈ {1, 2, ...,K}
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The Dirichlet-Multinomial
Posterior Mean and Mode

we want to maximize f (θ) = log(p(θ|D)) subject to g(θ) , 1−
∑K

j=1 θj = 0

the Lagrangian function is

l(θ, λ) , f (θ) + λg(θ) = log(p(θ|D)) + λg(θ) =

=
∑
j

Nj log θj +
∑
j

(αj − 1) log θj + λ

(
1−

∑
j

θj

)
in order to solve the constrained optimization we impose

∂l

∂λ
= 1−

K∑
j=1

θj = 0

∂l

∂θj
=

N ′j
θj
− λ = 0 ⇒ N ′j = λθj

where N ′j , Nj + αj − 1
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The Dirichlet-Multinomial
Posterior Mean and Mode

we can solve the following equations by plugging-in the second in the first

1−
K∑
j=1

θj = 0

N ′j = λθj

and get ∑
j

N ′j = λ ⇒ N + α0 − K = λ

where α0 =
∑K

j=1 αj

the MAP estimate is obtained as

θMAP
j =

Nj + αj − 1

N + α0 − K

the MLE estimate is obtained by using a uniform prior3, i.e. αj = 1

θMLE
j =

Nj

N
3recall that with p(θ) ∝ 1 one has p(θ|D) ∝ p(D|θ)
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The Dirichlet-Multinomial
Posterior Predictive

now let’s focus on prediction of future data

the posterior predictive is

p(x̃ = j |D) =

∫
p(x̃ = j ,θ|D)dθ =

∫
p(x̃ = j |θ,D)p(θ|D)dθ =

(data iid, x̃ independent from D) =

∫
p(x̃ = j |θ)p(θ|D)dθ =

=

∫
p(x̃ = j |θj)

[ ∫
p(θ−j , θj |D)dθ−j

]
dθj =

=

∫
θjp(θj |D)dθj = E[θj |D] =

αj + Nj∑
j(αj + Nj)

=
αj + Nj

α0 + N

θ−j is the vector θ without the j-th component

for the last two passages check the mean value of a Dirichlet distribution

again we have used the Bayesian procedure of integrating out the unknown
parameter

as with the beta-binomial model, the Bayesian approach solves the zero-count
problem (when for some j ∈ {1, ..,K} we observe Nj = 0)
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