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The Beta-Binomial Model

Problem Definition

problem definition
@ consider a series of N coin tosses

e we would like to infer the probability 6 € [0, 1] that a coin shows up
heads, given a series of observed coin tosses

@ in this case we consider the continuous random variable 6

N.B.: in the previous lesson we inferred a distribution over a discrete RV
h € H drawn from a finite space
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The Beta-Binomial Model

Likelihood

@ for each i-th coin toss we have a discrete RV X; ~ Ber(8), where X; = 1 represents
"heads” and X; = 0 represents " tails”

@ the RV 0 € [0, 1] represents the probability of heads, i.e.
0 = Px(X =1]9)

@ since we assume to observe a set of iid" trials D = {xi, ..., xy} the likelihood
function is

N N
p(DI6) = [ Ber(xil6) = [] 0"~ (1 — 6)=0) =
i=1 i=1

=M@ -9

where Ny = SN T(x; = 1) is the number of observed heads, and
No = S_F I(x; = 0) is the number of observed tails

@ N; and Ny are called the counts, one has N = Ny + Ny

Independent and Identically Distributed
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The Beta-Binomial Model

Sufficient Statistics

@ given that the likelihood function is
p(DI0) = 0" (1 — 0)"%

all we need to specify it are the counts Ny and N

@ in this case s(D) = (N1, Np) are called the sufficient statistics of the data: all we
need to know about D to infer

@ more formally s(D) is a sufficient statistics for the data D if
p(6|D) = p(6]s(D))

@ in this example, another sufficient statistics is s(D) = (N, M1) (since No = N — Nj)
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The Beta-Binomial Model

Likelihood

@ if we consider N; (the number of observed heads) as a RV
Ny ~ Bin(N, )

with the binomial distribution
. (M No
Bin(M [N, 0) = N 0™ (1-0)

@ hence if we consider the data D’ = (Ni, Np), we have
p(D|0) x p(D'10) x 0™ (1 — ) x Bin(N:|N, 6)

since (NNl) can be considered as a constant which does not depend on 6

@ here is the reason for the "binomial” part of the name beta-binomial model
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The Beta-Binomial Model

Prior

@ we need a probability prior for 6 which has support over [0, 1]

@ given that
p(D]F) = oM (1 — o)™

if we had a prior of the same form, i.e.
p(6) oc 67 (1 —6)™
we could easily evaluate the posterior as
P(OID) o< p(DI0)p(6) oc 6™ (1 — 0)"00™ (1 — )7 = 0™ (1 — )"0

@ when the prior and the posterior have the same form, we say that the prior is a
conjugate prior for the corresponding likelihood

@ in the case of the Bernoulli, the conjugate prior is the beta distribution
Beta(f|a, b) x 67~ 1(1 — 0)°!

@ here is the reason for the "beta” part of the name beta-binomial model
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The Beta-Binomial Model

Prior

@ hence we select the conjugate prior
p(0) = Beta(f]a, b) 67~} (1 — 0)°!
@ in general the parameters 7 of the prior are called hyper-parameters, we can set
them in order to encode our prior beliefs
@ in this case w = (a, b)

@ for instance, given the beta distribution has mean m and standard deviation o

me 2 o ab
T a+b “V(a+b)2(at+b+1)

if we want to represent our prior belief that § has mean m = 0.7 and 0 = 0.2, we
can use these equations and compute a = 2.975 and b = 1.275

@ if we know "nothing”, we can use a uniform prior by setting a = b = 1 in order to
have p(6) = Unif(0, 1)

homework: ex 3.15 and ex 3.16
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The Beta-Binomial Model

Posterior

@ the posterior is obtained as a beta-binomial model
p(0)D) x p(D|0)p(0) x Bin(N1]0, No + Ni)Beta(f|a, b)
o M (1 — 0)Mga1(1 — )bt = gMital(1 _ g)Notb-t
hence we have
p(6]|D) x Beta(0|Ny + a, No + b)
@ N; and Ny are called the empirical counts
@ the hyper-parameters a and b are called the pseudo-counts

@ the pseudo-counts a and b play in the prior the same role that the empirical counts
Ny and Ny play in the likelihood

@ the strength of the prior, is given by the equivalent sample size ap = a + b which
is the sum of the pseudo-counts

@ «p plays a role analogous to N = N; + Np
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The Beta-Binomial Model

Posterior

ao=4, N=20 ao=7, N=24

strong prior duetoa=5>b=2
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The Beta-Binomial Model

Sequential Posterior - Online Learning

let's see if updating the posterior sequentially is equivalent to updating in single batch
@ first sequence: D’ with sufficient statistics Nj, N} (N" = Ni + Ny )
@ second sequence: D" with sufficient statistics N;’, N (N" = N{ + NY)
@ overal: DA D' UD”, Ny 2 Nj + Nj and No & N§ + N§

batch mode
p(8]D) = p(8|D’, D")  Bin(N1|6, No 4+ N1)Beta(f]a, b) oc Beta(8| N1 + a, No + b)

sequential mode

@ first sequence posterior: p(0|D’) o Beta(0|N; + a, Ny + b)
@ second sequence posterior: p(8]D’, D) x p(D"|0) x
—_——

’
p(0|D’)
——r
lihelihood forD’/ prior for D’/ based on D’

oc Bin(Ny' |6, N’ + Ni')Beta(0|N; + a, No + b) o<

o Beta(0|Ny 4 Ny’ + a, Ng + Ng' + b) o< Beta(0| Ny 4 a, No + b)
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The Beta-Binomial Model

Sequential Posterior - Online Learning

@ we have written the following equation by using intuition
pOID' D) p(D"10) x  p(OD)
N—— N——
lihelihood forD’/ prior for D’/ based on D’

but this can be shown as follows

oy _ O.D"ID') _ p(D"10,D)p(0]D)
PO = ooy~ porio)

@ note that p(D”|0, D) = p(D"”|0) since D" and D’ are independent

@ hence we obtain the first equation above

N.B.: the above equation shows that Bayesian inference is well-suited for online learning
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The Beta-Binomial Model

Posterior Predictive

let's revise the beta distribution
@ X is a continuous RV with values x € [0, 1]

@ X ~ Beta(a, b), i.e. X has a beta distribution

1 _ _
Beta(x|a, b) = B b)Xa M1 —x)Pt
@ requirements: a > 0and b >0
@ the beta function is F(a)F(b)
B(a, b) & 2/ 0)
(@.5) = £ b)
@ mean E[X] = ;%
@ mode ;215
@ variance Var[X] = m

N.B. the above equations will be used in the following slide
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The Beta-Binomial Model

Posterior Mean and Mode

® Ome = arg max p(D|0) = arg max [9"’1(1 - G)Nﬂ =M (homework: ex 3.1)
@ posterior mode:
_ _ . a + N —1
Omap = arg max p(6|D) = arg max Beta(0|Ny + a, No + b) = SrbiN_2

@ posterior mean:

! a+ N a+ N
E[9|D] :/O op(oip)d0 = 2t~ 2T

@ prior mean:
1 1
E[f] = / 0p(0)do = / 0Beta(0]a, b)do = 2
0 0 Qo
where a and «pg respectively play the role of Ny and N
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The Beta-Binomial Model

Posterior Mean and Mode

N
® Ime= §
_ athp—1
® Omar = Tprna
_ ath
@ E[9|D] = oo il

@ prior mean: E[f] = [0p(0)d0 = m; = 2
Qo
@ the posterior mean can decomposed as

mioo + Ny oo N N
E[6|D] = = M
) = = TN ~ ™ot N T a0 s N N

=Am1 + (1 — X\)Omee

Qo
ap+ N
@ the weaker the prior, the smaller A, the closer E[6|D] to Oumie, hence

A
were \ =

lim E[0|D] = Ome
N—oco
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The Beta-Binomial Model

Posterior Predictive

@ now let's focus on prediction of future data
@ the posterior predictive is

1

1
p(x=1D) = [ p(x =1.6[D)d0 = [ p(x = 116, D)p(6]D)d0 =
0 0
1
(data iid, X independent from D) = / p(x =1|0)p(0|D)do =
0

1
= / OBeta(0|N: + a, No + b)d6 = E[0|D]
0

@ here we have used the Bayesian procedure of integrating out the unknown
parameter

@ if we reconsider the above equation
1 1
p(X|D) = / p(X|0)p(6|D)d0 = / Ber(%|0)p(0|D)d?
0 0

and we plug-in? § = E[#|D] we obtain p(%|D) = Ber(X|E[0|D])
%recall the plug-in approximation p(0|D) = &,(0)
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Overfitting

The Black Swan Paradox

@ let's consider the plug-in approximation with Onm e = N1/N, we obtain
p(X|D) ~ Ber(X|0mLE)

@ the MLE estimate performs very bad with small datasets

@ for instance, suppose we observed N; = 0 and Ny = 3, in this case Oy e = 0 and
we predict that heads is impossible

@ this is called the zero count problem or sparse data problem

@ this problem is analogous to the black swan paradox: Western conception that all
swans were white; black swans were discovered in Australia in the 17th Century
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Overfitting

The Black Swan Paradox

@ now let's see the same problem in a Bayesian perspective
@ assume a beta prior p(6) = Beta(a, b) with a = b =1 (uniform prior)
@ as already computed

Ny +1

p(x = 1|D) = E[6|D] = M iNer2

@ this justifies the common practice of adding 1 to the counts (add-one smoothing)
@ in this case even if Ny =0 and No = 3 we have p(¥ =1|D)=1/4#0
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The Dirichlet-Multinomial

problem definition

problem definition
@ consider a series of N dice rolls
@ the dice has K faces

e we would like to infer the probability 6; € [0,1] that the j-th dice
face shows up, given a series of observations

@ in this case we have a continuous random variable 6 = (01, ..., 0k)
with 6; € [0,1] and 3/, 0; =1
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The Dirichlet-Multinomial

Likelihood

@ suppose we observe N dice rolls

@ for each j-th dice roll we have a discrete RV X; ~ Cat(0), where X; = j means
j-the face have shown up

@ the dataset is D = {x1,..., xy} where x; € {1,..., K} fori € 1,..., N

@ since data is assumed iid, the likelihood function is

N N K K
p(DI0) = [] Cat(xil0) = [ [T o =[] 0"
i=1 Jj=1

i=1 j=1

where Ny = ZN

i1 I(xi = k) is the number of times face k is observed

@ this likelihood function is proportional to the multinomial distribution

N K
Mu(Ny, ..., Nk|N, 8) = (N NK> o1
1...

j=t

since the multinomial coefficient (N1<,»\{NK) does not depend on 6
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The Dirichlet-Multinomial

Prior

@ the RV 0 = (64, ...,0k) lives in a K-dimensional probability simplex Sk
K
Sk={0eR": 6;€[0,1], > 6,=1}
j=1

@ we need a prior that (i) supports the probability simplex and (ii) ideally is
conjugate for the likelihood (prior and posterior have the same form)

@ the Dirichlet distribution satisfies both criteria

Dir(6]a) — ﬁ [0 160 € 50)
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The Dirichlet-Multinomial

Posterior

@ we obtain the posterior as usual

K K

p(6|D) o p(D|8)p(8) o [T o105+ =[] 0"~ o Dir(Blan+N, ..., cx+Ni)
j=1 j=1

where the a; are the pseudo-counts and the N; are the empirical counts

R Zszl «j is the equivalent sample size of the prior and determines its
strength
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The Dirichlet-Multinomial

Posterior Mean and Mode

@ the mode of the posterior can be derived by using a Lagrange multiplier
@ we want to maximize f(8) = log(p(8|D)) subject to g(0) £ 1 — Zszl 0;=0
@ let's define the Lagrangian function

1(6,2) = £(8) + Ag(6)

where A is the Lagrange multiplier

@ in order to optimize f(@) subject to the constraint g(6) = 0 we have to impose

ol

5—0

ol .

6701' =0 for J € {172,,K}
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The Dirichlet-Multinomial

Posterior Mean and Mode

@ we want to maximize f(8) = log(p(6|D)) subject to g(8) =137, 6, =0

@ the Lagrangian function is

1(6,)) £ £(0) + \g(8) = log(p(6]D)) + Ag(0) =
=> Nlogh+ > (a; —1)log; + /\<1 - Ze,—)

@ in order to solve the constrained optimization we impose

K
ol
5:1—20‘,‘:0
j=1
o N .
9 =9 =0 = M=)

where N/ £ Nj+aj — 1

Lecture 4 January 27, 2018
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The Dirichlet-Multinomial

Posterior Mean and Mode

@ we can solve the following equations by plugging-in the second in the first

K
1->6,=0
j=1

Nj = X0
and get
DN =X = Nta-K=2
J
K
where ag =371, oy
@ the MAP estimate is obtained as
ouap _ Nj+a;—1
J

TN +ag— K
@ the MLE estimate is obtained by using a uniform prior®, i.e. a; =1

N:
GJMLE _ Nj

3recall that with p(@) o 1 one has p(8|D) o p(D|6)
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The Dirichlet-Multinomial

Posterior Predictive

@ now let's focus on prediction of future data

@ the posterior predictive is
p(x = J1D) = [ p(x =j,6D)d6 = [ p(s = 6. D)p(6|D)d0 =
(data iid, X independent from D) = /p()“( = j|0)p(6|D)d6 =
= /P(>"< =j|91)[/P(9—179j\D)d9—j] do; =
a+ N i+ N

Yl +N) a0+ N
@ 0_; is the vector 8 without the j-th component

_ / 0p(6;D)d0; = E[0;|D] =

@ for the last two passages check the mean value of a Dirichlet distribution

@ again we have used the Bayesian procedure of integrating out the unknown
parameter

@ as with the beta-binomial model, the Bayesian approach solves the zero-count
problem (when for some j € {1, .., K} we observe N; = 0)
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