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Chapter Summary
·Relations and Their Properties

·n-ary Relations and Their Applications (not currently 
included in overheads)

·Representing Relations

·Closures of Relations (not currently included in  
overheads)

·Equivalence Relations

·Partial Orderings
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Section Summary
·Relations and Functions

·Properties of Relations

·Reflexive Relations

·Symmetric and Antisymmetric Relations

·Transitive Relations

·Combining Relations



Binary Relations
Definition: A binary relation R from a set A to a set B
is a subset R ṖA × B.

Example :

·Let A = {0,1,2} and B = {a,b} 

·{(0, a), (0, b), (1,a) , (2, b)} is a relation from A to B. 

·We can represent relations from a set A to a set B
graphically or using a table:

Relations are more general than 
functions. A function is a relation 
where exactly one element of B is 
related to each element of A.



Binary Relation on a Set

Definition: A binary relation R on a set Ais a subset 
of A × A or a relation from A to A.

Example :

·Suppose that A = {a,b,c}. Then R = {(a,a),(a,b), (a,c)} is 
a relation on A. 

·Let  A = {1, 2, 3, 4}. The ordered pairs in the relation                  
R = {(a,b) | a divides b} are

(1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and  (4, 4).



Binary Relation on a Set (cont.)
Question : How many relations are there on a set A?

Solution :  Because a relation on A is the same thing as a 
subset of AἉA, we count the subsets of A × A. Since            
A × A has n2 elements when A has n elements, and a set 
with m elements has 2m subsets, there are         subsets of  
A × A. Therefore,  there are        relations on a set A.

2| |2A

2| |2A



Binary Relations on a Set (cont.)
Example : Consider these relations on the set of integers:

R1 = {(a,b) | a  b}, R4 = {(a,b) | a = b},
R2 = {(a,b) | a > b}, R5 = {(a,b) | a = b + 1},
R3 = {(a,b) | a = b  or a = Â},        R6 = {(a,b) | a + b  σ Ȣ

Which of these relations contain each of the pairs

ρȟρ ȟ ρȟ ς ȟ ςȟ ρ ȟ ρȟ ρ ȟ ÁÎÄ ςȟ ς ȩ

Solution : Checking the conditions that define each relation, we see 
that the pair (1,1) is in R1, R3, R4 , and R6: (1,2) is in R1 and R6: (2,1) is in
R2, R5, and R6ȡ ρȟ ρ  ÉÓ ÉÎR2, R3, and R6 : (2,2) is in R1, R3, and R4.

Note that these relations are on an infinite set and each of these relations is an 
infinite set.



Reflexive Relations
Definition: R is reflexiveiff (a,a) Rɸ for every element       
a ɸ  A. Written symbolically, R is reflexive if and only if 

xᶅ[x Uɸ  x,x  ᶲ R]
Example : The following relations  on the integers are 
reflexive:
R1 = {(a,b) | a  b},
R3 = {(a,b) | a = b  or a = Â},
R4 = {(a,b) | a = b}.
The following relations are not reflexive:
R2 = {(a,b) | a > b   ÎÏÔÅ ÔÈÁÔ  σ ḿ σ ȟ
R5 = {(a,b) | a = b  ρ  ÎÏÔÅ ÔÈÁÔ  σ σ  ρ ȟ
R6 = {(a,b) | a + b  σ   ÎÏÔÅ ÔÈÁÔ τ   τ Ṁ σ Ȣ

If A  ᶮ then the empty relation is 
reflexive vacuously. That is the empty 
relation on an empty set is reflexive! 



Symmetric Relations
Definition: R is symmetric iff (b,a) Rɸ whenever (a,b) Rɸ 
for all a,b Aɸ. Written symbolically, R is symmetric if and 
only if 

xᶅ yᶅ [( x,y  ᶲR  y,x  ᶲ R]

Example : The following relations  on the integers are 
symmetric:
R3 = {(a,b) | a = b  or a = Â},
R4 = {(a,b) | a = b},
R6 = {(a,b) | a + b  σ Ȣ
The following are not symmetric:
R1 = {(a,b) | a  b  ÎÏÔÅ ÔÈÁÔ σ  τȟ ÂÕÔ τ Ṁ σ ȟ
R2 = {(a,b) | a > b   ÎÏÔÅ ÔÈÁÔ τ  σȟ ÂÕÔ σ ḿ τ ȟ
R5 = {(a,b) | a = b  ρ  ÎÏÔÅ ÔÈÁÔ τ  σ  ρȟ ÂÕÔ σ τ  ρ Ȣ



AntisymmetricRelations
Definition :A relation Ron a set A such that for all a,b Aɸ if 
(a,b) Rɸand (b,a) ᶲ R, then a = b  is called antisymmetric. 
Written symbolically, R is antisymmetric if and only if 

xᶅ yᶅ [( x,y  ᶲR᷈ y,x  ᶲ R  x = y]

·Example : The following relations  on the integers are 
antisymmetric :
R1 = {(a,b) | a  b},
R2 = {(a,b) | a > b},
R4 = {(a,b) | a = b},
R5 = {(a,b) | a = b + 1}.
The following relations are not antisymmetric:
R3 = {(a,b) | a = b  or a = Â} 

ÎÏÔÅ ÔÈÁÔ ÂÏÔÈ ρȟ ρ  ÁÎÄ ρȟρ  ÂÅÌÏÎÇ ÔÏ R3),
R6 = {(a,b) | a + b  σ  ÎÏÔÅ ÔÈÁÔ ÂÏÔÈ ρȟς  ÁÎÄ ςȟρ  ÂÅÌÏÎÇ ÔÏ R6).

For any integer, if aa  b and 
a  b , then a = b. 



Transitive Relations
Definition: A relation Ron a set A is called transitive if 
whenever (a,b) Rɸand (b,c) Rɸ, then (a,c) Rɸ, for all a,b,c Aɸ. 
Written symbolically, R is transitive if and only if 

xᶅ yᶅ zᶅ[( x,y  ᶲR᷈ y,z  ᶲ 2  x,z  ᶲ R ]

·Example : The following relations  on the integers are transitive:
R1 = {(a,b) | a  b},
R2 = {(a,b) | a > b},
R3 = {(a,b) | a = b  or a = Â},
R4 = {(a,b) | a = b}.
The following are not transitive:
R5 = {(a,b) | a = b + 1} (note that both (3,2) and (4,3) belong to R5, 

but not (3,3)),
R6 = {(a,b) | a + b  σ  ÎÏÔÅ ÔÈÁÔ ÂÏÔÈ ςȟρ  ÁÎÄ ρȟς  ÂÅÌÏÎÇ ÔÏ R6, but 

not (2,2)).

For every integer,a  b 
and b  c, then b  c. 



Combining Relations
·Given two relations R1 and R2, we can combine them 

using basic set operations to form new relations such 
as R1᷾R2, R1᷊R2, R1  R2, and R2 R1.

·Example : Let A = {1,2,3} and B = {1,2,3,4}. The 
relations R1 = {(1,1),(2,2),(3,3)} and                              
R2 = {(1,1),(1,2),(1,3),(1,4)} can be combined using 
basic set operations to form new relations:

R1᷾R2 ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} 

R1᷊R2 ={(1,1)} R1  R2 ={(2,2),(3,3)} 

R2 R1 ={(1,2),(1,3),(1,4)} 



Composition
Definition: Suppose

·R1 is a relation from a set A to a set B.

·R2 is a relation from B to a set C.

Then the composition (or composite) of R2 with R1, is a 
relation from A to C where

·if (x,y) is a member of R1 and (y,z) is a member of R2,
then (x,z) is a member of R2 Rʐ1.



Representing the  Composition of a 
Relation
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Powers of a Relation
Definition: Let R be a binary relation on A. Then the 
powers Rn of the relation Rcan be defined inductively by:

·Basis Step: R1 = R

·Inductive Step:  Rn+1 = Rn Rʐ

(see the slides for Section 9.3 for further insights)

The powers of a transitive relation are subsets of the 

relation. This is established by the following theorem:

Theorem 1: The relation Ron a set A is transitive iff
RnṖR for n = 1,2,3 ȣȢ

(see the text for a proof via mathematical induction)
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Section Summary
·Representing Relations using Matrices

·Representing Relations using Digraphs



Representing Relations Using 
Matrices
·A relation between finite sets can be represented using a 

zero-one matrix. 
·Suppose R is a relation from A = {a1, a2ȟ ȣȟ am} to                         

B = {b1, b2ȟ ȣȟ bn}.
·The elements of the two sets can be listed in any particular 

arbitrary order. When A = B, we use the same ordering. 

·The relation R is represented by the matrix                                         
MR = [mij], where

·The matrix representing R has a 1 as its (i,j) entry when ai
is related to bj and a 0 if  ai is not related to bj. 



Examples of Representing 
Relations Using Matrices

Example 1: Suppose that A = {1,2,3} and B = {1,2}. Let  
R be  the relation from A to B containing (a,b) if a Aɴ,    
bᶰB, and a > b. What is the matrix representing R 
(assuming the ordering of elements is the same as the 
increasing numerical order)?

Solution: Because R = {(2,1), (3,1),(3,2)}, the matrix is



Examples of Representing 
Relations Using Matrices (cont.)

Example 2: Let A = {a1,a2, a3} and B = {b1,b2, b3,b4, b5}. 
Which ordered pairs are in the relation R represented 
by the matrix

Solution: Because R consists of those ordered pairs 
(ai,bj) with mij = 1, it follows that:

R = {(a1, b2), (a2, b1),(a2, b3), (a2, b4),(a3, b1), {(a3, b3), (a3, b5)}. 



Matrices of Relations on Sets
·If R is a reflexive relation, all the elements on the main 

diagonal of MR are equal to 1.

·R is a symmetric relation, if and only if mij = 1 
whenever mji = 1. R is an antisymmetric relation, if 
and only if mij = 0  or mji = 0 when  i j. 


