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Inference Algorithms

* Types of inference algorithms

1. Exact

1. Variable Elimination
2. Clique trees (Belief Propagation)

2. Approximate

1. Optimization
1. Propagation with approximate messages
2. Variational (analytical approximations)

2. Particle-based (sampling)
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Variable Elimination: Basic Ideas

* We begin with principles underlying exact
inference in PGMs

 As we show, the same BN structure that
allows compaction of complex distributions
also helps support inference

* In particular we can use dynamic
programming techniques to perform inference

even for large and complex networks in
reasonable time
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Intuition for Variable Elimination

» Consider inference is a very simple BN

A>B=>CD (5 )
(5

— E.g., sequence of words
« CPDs are first order word probabilities

* \We consider phased computation
 Probabilities of four words: The, quick, brown, fox Q
[)

— Use results of a previous phase in computation
next phase

— Then reformulate this process in terms of a global
computation on the joint distribution 5
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Exact Inference: Variable Elimination

 To compute P(B), Q
—i.e., distribution of values b of B, we have
P(B)=> _P(A,B)=) P(a)P(B|a) G

_ required P(a), P(b|a) available in BN
* If A has k values and B has m values e

— For each b: k multiplications and k-1 addition

— Since there are m values of B, process is
repeated for each value of b: Q

* this computation is O(k x m)
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Moving Down BN

* Assume we want to compute P(C) Q
» Using same analysis Q
P(C) = Zb:P(B, C) :Z; P(b)P(C | D)
— P(c|b) is given in CPD e
— But P(B) is not given as network parameters
— It can be computed using Q

P(B)=> _P(A,B)=) P(a)P(B|a)

— If B and C have k values each, complexity is O(k?)
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Computation depends on Structure

1. Structure of BN is critical for

computation G
— If A had been a parent of C

P(C) =) P()P(C ) G
— would not have sufficed

2. Algorithm does not compute single
values but sets of values at a time °

— P(B) over all possible values of B are
used to compute P(C)
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Complexity of General Chain

* In general, if we have X, 2X,2.....2X, a

* and there are k values of X, total cost is
O(nk?) Q

* Nailve evaluation

« Generate entire joint and summing it out

* Would generate k" probabilities for the be
events x,,.. x,

* In this example, despite exponential size
of joint distribution we can do inference
in linear time
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Insight that avoids exponentiality

* The joint probability decomposes as
P(4,B,C,D)=P(4)P(B|A)P(C|B)P(D|C) 5

— To compute P(D) we need to sum together all
entries where D=d’ e

« And separately entries where D=d"

: 1 al hl | al c' | b d' | et
— Exact computation for P(D) is |, 7o) pule) paly) ﬁg,;lg(,lg ~
] ] + P(ai) P(bj—j|a})) P(c:|bz) P(di| )
— Examine summation A A
. P(a®) P(b'|a®) P(c*|b) P(d!
o 314 & 4th terms of first 2 terms: | £ bl bell) o)
+ P(a®) PR |a®) P(|8) P(d|e)
o P(c!|b!)P(d|c!
( | ) ( | ) P(a') P! |a') P(c'|b) P(<12| 1y
i i b Pla®) P! |a®) P([b) P& |c))
 Modify to first compute LR Pl B |
+ P(a®) P(¥*|a®) P(c'|b®) P(d*|cY)
* P(a')P(b'|a’)+P(a’)P(b'|a®) + Pla) PO a)) P(E[0) P(®])
. + P(a?) P(b}|(12) P((r‘z|b‘1) ((1| %)
* then multiply by common term + r@!) p@?jat) P 1) P2|e)
+ P(a®) P(¥?|a%) P(c*|b®) P((12| 2)
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First Transformation of sum
« Same structure is repeated throughout table

Performing the same transformation we get
the summation for P(D) as

(P(a')P(b' | a*) + P(a®)P(b' | a* )) P(ct | b)) P(d'|c)
+ (P(a')P(b? | a') + P(a®)P(b? | a®)) P(c' | b*) P(d'|cY)
+ (P(a)P(O | o)+ Pa)P(H! [a2) P([ D) P(d | )
+ (P(a))P(¥* | a') + P(a®)P(b? | a?)) P(c? | b%) P(d!|c?)

(P((LI)P(I)}) | (11) + P(a®)P(b" | a))) P(c! | bi) P(d‘? | ch)
+ (P(a')P(b? | a’) + P(a®)P(b* | a?)) P(c' | %) P(d*|c)
+ (P@)PG! | )+ PP [a2) P(2]6) P(& ] 2)
+ (P(a" ) P(? | a') + P(a®)P(b? | a®)) P(c* | b%) P(d? | ¢?)

— Observe certain terms are repeated several
times in this expression

— P(a')P(b'|a')+P(a?)P(b'|a*) and

— P(a')P(b’|a’)+P(a’)P(b’|a’) 11
are repeated four times
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2nd & 31 transformation on the sum

» Defining z,: Val(B) 2R
« where 7,(b’) and z,(b°) are the two expressions, we get

(b)) P(ct | b)) P(d'|
+ 71(b%) P(ct | b?) P(d* | ¢!
+ m(b') P(|b) P(d|c?
+ 7 (b?) P(c? | b?) P(d'|c?

n(b!) P(c[b') P(d*|c)
+ 1 (d%) P(ct|b?) P(d?| )
+ 7 (bY) P(c* | b)) P(d?|?)
+ n((b%) P(c*|b*) P(d?|c?)

— Can reverse the order of a sum and product

« sum first, product next

(1 (b")P(c! | o) + 1 (%) P(c! | b%))  P(d | c!)
+ (@) P(c? | b') + 7 (b*)P(c® | %)) P(d' | ?)

(1 (DY) P(ct | bY) + (V) P(ct | b%)) P(d? | ) 12
+ (V) P(? | b)) + (b)) P(c? | %)) P(d? | )
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Fourth Transformation of sum

* Again notice shared expressions that are
better computed once and used multiple
times
— We define 7,: Val(C) 2R

ry(c)=t,(b)P(c!|b!)+7,(b) P(c!|b?)
0(c) =1, (b)P(c?| b)) +1,(b) P(*|b?)

mlc) P(d|e)
+ 7(c?) P | )

TQ(CI) P(d:’) Cl)
+ 7"2((.?2) P((l2 (:2) 13
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Summary of computation

* We begin by computing z,(B)
* Requires 4 multiplications and 2 additions

» Using it we can compute 7,(C)  which
also requires 4 multis and 2 adds

* Finally we compute P(D) at same cost
 Total no of ops is I8

 Joint distribution requires 16 x 3=48 mps
and /4 adds

Srihari
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Computation Summary
o Transformation we have performed has steps

=222 PAPB|AHPC|BPD|C)
« We push the flrst summation resulting in

ZPD\CZPC|BZP P(B| A)

 We compute the product w,(4,B) =P(4)P(B|4) and
sum out 4 to obtain the function 7 (p)=$"4 (4,B)

— For each value of b, we compute
T(0)=> ¥ (4b) =) PAP(H|A

_ %,(B,C) =7,(B)P(C| B)
 We then continue - 0= w30

— Resulting 7,(C) is used to cémpute P(D)
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‘Coniputation is Dynamlc Programming

 Naiive way for P(D ZZZP P(B| A)P(C'| B)P(D|C)
would have us compute every

= P(A)P(b|A
— many times, once for every value of C and D

* For a chain of length » this would be
computed exponentially many times

* Dynamic Programming inverts order of
computation— performing it inside out rather

than outside In

— First computing once for all values in z,(B), that
allows us to compute 7,(C) once for all, etc. 1
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|deas that prevented exponential blowup

* Because of structure of BN, some
subexpressions depend only on a small
no. of variables

* By computing and caching these results
we can avoid generating them exponential
no. of times
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