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Topics 

1.  Types of Inference Algorithms 
2.  Variable Elimination: the Basic ideas 
3.  Variable Elimination 

– Sum-Product VE Algorithm 
– Sum-Product VE for Conditional Probabilities 

4.  Variable Ordering for VE 
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Inference Algorithms 
•  Types of inference algorithms  

1.  Exact 
1.  Variable Elimination 
2.  Clique trees (Belief Propagation) 

2.  Approximate 
1.  Optimization 

1.  Propagation with approximate messages 
2.  Variational  (analytical approximations) 

2.  Particle-based (sampling) 
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Variable Elimination: Basic Ideas 

•  We begin with principles underlying exact 
inference in PGMs 

•  As we show, the same BN structure that 
allows compaction of complex distributions 
also helps support inference 

•  In particular we can use dynamic 
programming techniques to perform inference 
even for large and complex networks in 
reasonable time 

4 
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Intuition for Variable Elimination 

•  Consider inference is a very simple BN 
         AàBàCàD
– E.g., sequence of words 

•  CPDs are first order word probabilities 

•  We consider phased computation 
•  Probabilities of four words: The, quick, brown, fox  

– Use results of a previous phase in computation of 
next phase 

– Then reformulate this process in terms of a global 
computation on the joint distribution 5 
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Exact Inference: Variable Elimination 

•  To compute P(B),  
–  i.e., distribution of values b of B, we have 

–  required P(a), P(b|a) available in BN 
•  If A has k values and B has m values 

– For each b: k multiplications and k-1 addition 
– Since there are m values of B, process is 

repeated for each value of b: 
•  this computation is O(k x m)
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P(B) = P(A,B) =

a
∑ P(a)P(B |a)

a
∑
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Moving Down BN 

•  Assume we want to compute P(C) 
•  Using same analysis 

– P(c|b) is given in CPD 
– But P(B) is not given as network parameters 
–  It can be computed using 

–  If B and C have k values each, complexity is O(k2) 
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P(C) = P(B,C) =

b
∑ P(b)P(C |b)

b
∑

   
P(B) = P(A,B) =

a
∑ P(a)P(B |a)

a
∑
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Computation depends on Structure  

1.  Structure of BN is critical for 
computation 
–  If A had been a parent of C 

– would not have sufficed 
2.  Algorithm does not compute single 

values but sets of values at a time 
– P(B) over all possible values of B are 

used to compute P(C) 

   
P(C) = P(b)P(C |b)

b
∑
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Complexity of General Chain 
•  In general, if we have X1àX2à…..àXn 

•  and there are k values of Xi, total cost is 
O(nk2)

•  Naïve evaluation 
•  Generate entire joint and summing it out 
•   Would generate kn probabilities for the 

events x1,.. xn

•  In this example, despite exponential size 
of joint distribution we can do inference 
in linear time 9 
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Insight that avoids exponentiality 

•  The joint probability decomposes as 

– To compute P(D) we need to sum together all 
entries where D=d1 

•  And separately entries where D=d2 

– Exact computation for P(D) is: 
– Examine summation 

•  3rd & 4th terms of first 2 terms: 
•  P(c1|b1)P(d1|c1) 
•  Modify to first compute 
•  P(a1)P(b1|a1)+P(a2)P(b1|a2) 
•  then multiply by common term 10 

C 

D 

A 

B  P(A,B,C,D)=P(A)P(B|A)P(C|B)P(D|C) 
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First Transformation of sum 

•  Same structure is repeated throughout table 
•  Performing the same transformation we get 

the summation for P(D) as 

 

– Observe certain terms are repeated several 
times in this expression 

–  P(a1)P(b1|a1)+P(a2)P(b1|a2) and  
–  P(a1)P(b2|a1)+P(a2)P(b2|a2) 
     are repeated four times 

11 
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2nd & 3rd  transformation on the sum 
•  Defining τ1: Val(B) àR 

•  where τ1(b1) and τ1(b2) are the two expressions, we get 

 

– Can reverse the order of a sum and product 
•  sum first, product next 

12 
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Fourth Transformation of sum 

•  Again notice shared expressions that are 
better computed once and used multiple 
times 
– We define τ2: Val(C) àR 

13 

τ2(c1)=τ1(b1)P(c1|b1)+τ1(b2)P(c1|b2) 

τ2(c2)=τ1(b1)P(c2|b1)+τ1(b2)P(c2|b2) 
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Summary of computation 

•  We begin by computing τ1(B)  
•  Requires 4 multiplications and 2 additions 
•  Using it we can compute  τ2(C)      which 

also requires 4 multis and 2 adds 
•  Finally we compute P(D) at same cost 
•  Total no of ops is 18 
•  Joint distribution requires 16 x 3=48 mps 

and 14 adds 
14 
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Computation Summary 

•  Transformation we have performed has steps 

•  We push the first summation resulting in 

•  We compute the product  ψ1(A,B) =P(A)P(B|A)  and 
sum out A to obtain the function 
– For each value of b, we compute  

•  We then continue 
– Resulting τ2(C) is used to compute P(D) 

15 

   
P(D) = P(A)P(B |A)

A
∑ P(C |B)P(D |C)

B
∑

C
∑

   
P(D) = P(D |C) P(C |B) P(A)P(B |A)

A
∑

B
∑

C
∑

    
τ

1
(B) = ψ

1
(A,B)

A
∑

    
τ

1
(b) = ψ

1
(A,b)

A
∑ = P(A)P(b |A)

A
∑
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∑
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•  Naiive way for  

 would have us compute every  

– many times, once for every value of C and D 
•  For a chain of length n this would be 

computed exponentially many times 
•  Dynamic Programming inverts order of 

computation– performing it inside out rather 
than outside in 
– First computing once for all values in τ1(B), that 

allows us to compute τ2(C) once for all, etc.  16 

P(b)= P(A)P(b |A)
A
∑

   
P(D) = P(A)P(B |A)

A
∑ P(C |B)P(D |C)

B
∑

C
∑
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Ideas that prevented exponential blowup 

•  Because of structure of BN, some 
subexpressions depend only on a small 
no. of variables 

•  By computing and caching these results 
we can avoid generating them exponential 
no. of times 

17 


