
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e (McGraw-Hill,

2009). Slides copyright 2009 by Roger Pressman. (revised and added by Seung-Hoon Na 1

Appendix 1

 Introduction to UML

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

UML

 The Unified Modeling Language (UML)

 a standard language for writing software blueprints.

 used to visualize, specify, construct, and document

the artifacts of a software-intensive system

 developed by Grady Booch, Jim Rumbaugh, and Ivar

Jacobson in the mid-1990s with much feedback from

the software development community.

 In 1997, UML 1.0 was submitted to the Object

Management Group

 The current standard is UML 2.3 and is now an ISO

standard.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 2

UML

 UML 2.3 provides 13 different diagrams for use

in software modeling.

 What we cover here

 class diagram

 deployment diagram

 use case diagram

 Sequence diagram

 Communication diagram

 Activity diagram

 State diagram

3

Class Diagram

 Model classes, including their attributes,

operations, and their relationships and

associations with other classes

 A class diagram provides a static or structural

view of a system.

 It does not show the dynamic nature of the

communications between the objects of the

classes in the diagram.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 4

Class Diagram

 The top part contains the name of the class.

 The middle section lists the attributes of the

class.

 An attribute refers to something that an object of that

class knows or can provide all the time.

 The third section contains the operations or

behaviors of the class.

 An operation refers to what objects of the class can

do. It is usually implemented as a method of the

class.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 5

Example

 Thoroughbred class that models thoroughbred horses.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 6

Class Diagram: Attribute &

Operation

 Each attribute can have a name, a type, and a level of

visibility. The type and visibility are optional

 The visibility is indicated by a preceding –, #, ~, or +,

indicating, respectively, private, protected, package, or

public visibility

 You can also specify that an attribute is a static or

class attribute by underlining it

 Each operation can also be displayed with a level of

visibility, parameters with names and types, and a

return type

7

Class Diagram: Abstract

class & method

 An abstract class or abstract method is

indicated by the use of italics for the name in

the class diagram.

 An interface is indicated by adding the phrase

“«interface»” (called a stereotype) above the

name.

 An interface can also be represented graphically by a

hollow circle.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 8

Class Diagram: Relationship

b/w Classes
 A class that is a subclass of another class is connected to it by

an arrow with a solid line for its shaft and with a triangular

hollow arrowhead. The arrow points from the subclass to the

superclass.

 An arrow with a dashed line for the arrow shaft indicates

implementation of an interface. In UML, such a relationship is

called a realization.

9

Example

10

• the Thoroughbred and QuarterHorse classes are shown to be

subclasses of the Horse abstract class.

• Horse class implements or realizes the OwnedObject interface.
• there is an association between OwnedObject and Person in which the

Person plays the role of owner.

Class Diagram: Association

 An association between two classes means that

there is a structural relationship between them.

Associations are represented by solid lines. An

association has many optional parts. It can be

labeled, as can each of its ends, to indicate the

role of each class in the association.

 Arrows on either or both ends of an association

line indicate navigability. Also, each end of the

association line can have a multiplicity value

displayed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 11

Class Diagram: Association

 An association with an arrow at one end

indicates one-way navigability.

 The arrow means that from one class you can easily

access the second associated class to which the

association points, but from the second class, you

cannot necessarily easily access the first class.

 An association with no arrows usually indicates

a two-way association

 It could just mean that the navigability is not

important and so was left off.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 12

Class Diagram:

Attribute of a class

 An attribute of a class is very much the same

thing as an association of the class with the

class type of the attribute.

 Attribute approach: To indicate that a class has

a property called “name” of type String, one

could display that property as an attribute

 Association approach: one could create a one-

way association from the Horse class to the

String class with the role of the String class

being “name.”

13

Class Diagram:

Dependency relationship
 A dependency relationship represents another

connection between classes and is indicated by a

dashed line (with optional arrows at the ends and with

optional labels)

 One class depends on another if changes to the second class

might require changes to the first class.

 An association from one class to another automatically

indicates a dependency. No dashed line is needed between

classes if there is already an association between them.

 For a transient relationship, we should draw a dashed line

from the first class to the second.

 E.g.) the Thoroughbred class uses the Date class whenever

its getCurrentAge() method is invoked, and so the

dependency is labeled “uses.”
14

Class Diagram:

Multiplicity

 The multiplicity of one end of an association means the number

of objects of that class associated with the other class.

 A multiplicity is specified by a nonnegative integer or by a range

of integers.

 A multiplicity specified by “0..1” means that there are 0 or 1

objects on that end of the association.

 A multiplicity specified by “1..*” means one or more, and a

multiplicity specified by “0..*” or just “*“ means zero or more.

 E.g.) An * was used as the multiplicity on the OwnedObject end of the

association with class Person in Figure A1.2 because a Person can

own zero or more objects

15

Class Diagram:

Aggregation & composition

 An aggregation is a special kind of association

indicated by a hollow diamond on one end of the

icon.

 It indicates a “whole/part” relationship, in that the

class to which the arrow points is considered a

“part” of the class at the diamond end of the

association.

 A composition is an aggregation indicating strong

ownership of the parts. In a composition, the parts

live and die with the owner because they have no

role in the software system independent of the

owner.
16

Class Diagram: Note

 a note is represented by a box with a dog-

eared corner and is connected to other icons

by a dashed line. It can have arbitrary content

(text and graphics) and is similar to comments

in programming languages

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 17

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 18

• A College has an aggregation of Building objects

• A College has a composition of Course objects

• Note the constraint attached to the Course class

Deployment Diagram

 Deployment diagram focuses on the structure

of a software system and is useful for showing

the physical distribution of a software system

among hardware platforms and execution

environments

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 19

Deployment Diagram:

Example

 Suppose, for example, you are developing a Web-based graphics-

rendering package.

 Users of your package will use their Web browser to go to your website

and enter rendering information.

 Your website would render a graphical image according to the user’s

specification and send it back to the user.

 Because graphics rendering can be computationally expensive, you

decide to move the rendering itself off the Web server and onto a

separate platform.

 Therefore, there will be three hardware devices involved in your

system: the Web client (the users’ computer running a browser), the

computer hosting the Web server, and the computer hosting the

rendering engine.

20

Deployment Diagram:

Example

21

Deployment Diagram

 Deployment diagrams can also display

execution environment nodes, which are drawn

as boxes containing the label “«execution

environment»”.

 These nodes represent systems, such as

operating systems, that can host other

software.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 22

Use-Case Diagram

 The UML use-case diagram help you determine the

functionality and features of the software from the user’s

perspective.

 E.g.) a software application for managing digital music files,

similar to Apple’s iTunes software

 Download an MP3 music file and store it in the application’s library.

 Capture streaming music and store it in the application’s library.

 Manage the application’s library (e.g., delete songs or organize them in

playlists).

 Burn a list of the songs in the library onto a CD.

 Load a list of the songs in the library onto an iPod or MP3 player.

 Convert a song from MP3 format to AAC format and vice versa.

23

Use-Case Diagram: Example

24

Use-Case Diagram

 The stick figure represents an actor (Chapter 5)

that is associated with one category of user (or

other interaction element).

 Some use cases in a system might be related

to each other.

 To avoid duplication in use cases, it is usually

better to create a new use case representing

the duplicated activity, and then let the other

uses cases include this new use case as one

of their steps.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 25

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 26

Sequence Diagram

 A sequence diagram is used to show the

dynamic communications between objects

during execution of a task.

 In contrast to class diagrams and deployment

diagrams, which show the static structure of a

software component,

 It shows the temporal order in which messages

are sent between the objects to accomplish

that task.

 It can be used to show the interactions in one

use case or in one scenario of a software

system.
27

Sequence Diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 28

Sequence Diagram

 Each box in the row at the top of the diagram usually corresponds to

an object

 Below each box there is a dashed line called the lifeline of the object

 A sequence diagram shows method calls using horizontal arrows

from the caller to the callee,

 When an object is executing a method (that is, when it has an

activation frame on the stack), you can optionally display a white bar,

called an activation bar,

 The diagram can also optionally show the return from a method call

with a dashed arrow and an optional label.

• We can leave off the return arrow when a void method has been called

• A black circle with an arrow coming from it indicates a found message

whose source is unknown or irrelevant

29

Sequence Diagram

 If you insist on including loops, conditionals,

and other control structures in a sequence

diagram, you can use interaction frames, which

are rectangles that surround parts of the

diagram and that are labeled with the type of

control structures they represent.

 The phrases in square brackets are called

guards, which are Boolean conditions that

must be true if the action inside the interaction

frame is to continue.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 30

Sequence Diagram

31

The MouseListener is sent the rectDragged message.

The MouseListener then tells the drawing to highlight all figures in the rectangle by called the

method highlightFigures(), passing the rectangle as the argument.

The method loops through all Figure objects in the Drawing object and, Figure intersects the

rectangle, the Figure is asked to highlight itself. The phrases in square brackets are called

guards, which are Boolean conditions that must be true if the action inside the interaction

frame is to continue.

Sequence Diagram

 1. You can distinguish between synchronous and asynchronous

messages. Synchronous messages are shown with solid arrowheads

while asynchronous messages are shown with stick arrowheads.

 2. You can show an object sending itself a message with an arrow

going out from the object, turning downward, and then pointing back to

the same object.

 3. You can show object creation by drawing an arrow appropriately

labeled (for example, with a «create» label) to an object’s box. In this

case, the box will appear lower in the diagram than the boxes

corresponding to objects already in existence when the action begins.

 4. You can show object destruction by a big X at the end of the object’s

lifeline. Other objects can destroy an object, in which case an arrow

points from the other object to the X. An X is also useful for indicating

that an object is no longer usable and so is ready for garbage

collection. 32

Sequence Diagram

33

Communication Diagram

 The UML communication diagram (called a

“collaboration diagram” in UML 1.X) provides

another indication of the temporal order of the

communications but emphasizes the

relationships among the objects and classes

instead of the temporal order.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 34

The highlight() message invokes three other messages:

setColor(), drawRect(), and drawstring(). The numbering in each label shows the

nesting as well as the sequential nature of each message. 35

Communication Diagram

 The interacting objects are represented by rectangles.

 Associations between objects are represented by lines

connecting the rectangles.

 There is typically an incoming arrow to one object in the

diagram that starts the sequence of message passing.

That arrow is labeled with a number and a message

name.

 If the incoming message is labeled with the number 1

and if it causes the receiving object to invoke other

messages on other objects, then those messages are

represented by arrows from the sender to the receiver

along an association line and are given numbers 1.1,

1.2, and so forth, in the order they are called.

36

Activity Diagrams

 A UML activity diagram depicts the dynamic

behavior of a system or part of a system

through the flow of control between actions that

the system performs.

 It is similar to a flowchart except that an activity

diagram can show concurrent flows.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 37

Activity Diagrams
 Action node

• The main component of an activity diagram

• represented by a rounded rectangle

• corresponds to a task performed by the software system

• Arrows from one action node to another indicate the flow of control

 Initial node

• Represented by a solid black dot,

• Indicates the starting point of the activity

 Final node

• Represented by a black dot surrounded by a black circle

• Indicates the end of the activity

 Fork

• Drawn as a horizontal black bar with one arrow pointing to it and two

or more arrows pointing out from it

• Represents the separation of activities into two or more concurrent

activities
38

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 39

join

Activity Diagrams

 Join

 A way of synchronizing concurrent flows of control.

 represented by a horizontal black bar with two or more incoming

arrows and one outgoing arrow.

 The flow of control represented by the outgoing arrow cannot

begin execution until all flows represented by incoming arrows

have been completed.

 Decision node

 Corresponds to a branch in the flow of control based on a

condition.

 Displayed as a white triangle with an incoming arrow and two or

more outgoing arrows

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 40

Activity Diagrams

 Swimlane diagram

 To represent how the actions are divided among the

participants

 Formed by dividing the diagram into strips or “lanes,”

each of which corresponds to one of the participants.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 41

42

Activity diagram with swimlanes added

State Diagrams

 A UML State diagram

 models an object’s states, the actions that are

performed depending on those states, and the

transitions between the states of the object.

 Example: The state diagram for a part of a

Java compiler

 The input to the compiler is a text file as a long string

of characters

 The compiler reads characters one at a time and

from them determines the structure of the program

43

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 44

State diagram

State Diagrams

 Activity state

 The state in which an object performs some activity,

called a do-activity,

 Non-activity state (normal case)

• when an object is in a state, it usually does nothing but

sit and wait for a trigger event to occur.

 Represented by the bottom half of the state’s

rounded rectangle the phrase “do/” followed by the

activity that is to be done while in that state.

45

46

Object Constraint Language

 Often, graphical representations are not enough

 The Object Constraint Language (OCL)

 Complements UML by allowing you to use a formal grammar and

syntax to construct unambiguous statements about various design

model elements

 OCL is constructed in four parts

 (1) a context that defines the limited situation in which the statement

is valid,

 (2) a property that represents some characteristics of the context

 (3) an operation (e.g., arithmetic, set-oriented) that manipulates or

qualifies a property

 (4) keywords (e.g., if, then, else, and, or, not, implies) that are used

to specify conditional expressions.
47

OCL: Example

48

customer
self.authorizationAuthority ‘yes’

authorization can only occur if the customer is authorized to approve

the cost of the job.

Object Constraint Language

 As the design model is created, there are often

instances in which pre- or postconditions must

be satisfied prior to completion of some action

specified by the design.

 OCL provides a powerful tool for specifying

pre- and postconditions in a formal manner.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 49

OCL: Example

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009). Slides copyright 2009 by Roger Pressman. 50

context PrintJob::validate(upperCostBound : Integer, custDeliveryReq : Integer)
pre: upperCostBound > 0 and custDeliveryReq > 0 and self.jobAuthorization ‘no’

post: if self.totalJobCost < upperCostBound and self.deliveryDate < custDeliveryReq
then

self.jobAuthorization = ‘yes’
endif

the customer provides an upper cost bound for the print job and

a “drop-dead” delivery date at the same time as other print job

characteristics are specified.

If cost and delivery estimates exceed these bounds, the job is not

submitted and the customer must be notified.

