
These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e (McGraw-Hill,

2009) Slides copyright 2009 by Roger Pressman. (revised and added by Seung-Hoon Na) 1

Chapter 7

 Principles that Guide Practice

Slide Set to accompany

Software Engineering: A Practitioner’s Approach, 8/e
by Roger S. Pressman

Slides copyright © 1996, 2001, 2005, 2009 by Roger S. Pressman

For non-profit educational use only

May be reproduced ONLY for student use at the university level when used in conjunction

with Software Engineering: A Practitioner's Approach, 7/e. Any other reproduction or use is

prohibited without the express written permission of the author.

All copyright information MUST appear if these slides are posted on a website for student

use.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 2

Software Engineering Knowledge

 You often hear people say that software development

knowledge has a 3-year half-life: half of what you need to

know today will be obsolete within 3 years. In the domain of

technology-related knowledge, that’s probably about right. But

there is another kind of software development knowledge—a

kind that I think of as "software engineering principles"—that

does not have a three-year half-life. These software

engineering principles are likely to serve a professional

programmer throughout his or her career.

Steve McConnell

What, who, why?

 Software Practice is a broad array of principles, concepts,
methods and tools that you must consider as software is
planned and developed.

 Software engineers and their managers conduct a variety of
software engineering tasks are using it.

 Software Process provides everyone with a road map for
getting to a successful destination. Practice provides you with
the details you will need to drive along the road. Where the
bridges, the roadblocks, and the forks are located? It instructs
you how to drive, where to slow down, and where to speed up.
In the software engineering context, it is what you do day in
and day out as software evolves from an idea to a reality.

 Three elements: principles, concepts and methods. A fourth
element namely tools supports the application of methods.

3

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 4

Principles that Guide Process - I

 Principle #1. Be agile. Whether the process model you
choose is prescriptive or agile, the basic tenets of agile
development should govern your approach.

 Principle #2. Focus on quality at every step. The exit
condition for every process activity, action, and task should
focus on the quality of the work product that has been
produced.

 Principle #3. Be ready to adapt. Process is not a religious
experience and dogma has no place in it. When necessary,
adapt your approach to constraints imposed by the problem,
the people, and the project itself.

 Principle #4. Build an effective team. Software engineering
process and practice are important, but the bottom line is
people. Build a self-organizing team that has mutual trust and
respect.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 5

Principles that Guide

Process - II

 Principle #5. Establish mechanisms for communication
and coordination. Projects fail because important information
falls into the cracks and/or stakeholders fail to coordinate their
efforts to create a successful end product.

 Principle #6. Manage change. The approach may be either
formal or informal, but mechanisms must be established to
manage the way changes are requested, assessed, approved
and implemented.

 Principle #7. Assess risk. Lots of things can go wrong as
software is being developed. It’s essential that you establish
contingency plans.

 Principle #8. Create work products that provide value for
others. Create only those work products that provide value for
other process activities, actions or tasks.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 6

Principles that Guide Practice
 Principle #1. Divide and conquer. Stated in a more

technical manner, analysis and design should always

emphasize separation of concerns (SoC).

 Principle #2. Understand the use of abstraction. At it

core, an abstraction is a simplification of some complex

element of a system used to communication meaning in

a single phrase.

 Principle #3. Strive for consistency. A familiar context

makes software easier to use.

 Principle #4. Focus on the transfer of information.

Pay special attention to the analysis, design,

construction, and testing of interfaces.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 7

Principles that Guide Practice
 Principle #5. Build software that exhibits effective

modularity. Separation of concerns (Principle #1)
establishes a philosophy for software. Modularity
provides a mechanism for realizing the philosophy.

 Principle #6. Look for patterns. Brad Appleton [App00]
suggests that: “The goal of patterns within the software
community is to create a body of literature to help
software developers resolve recurring problems
encountered throughout all of software development.

 Principle #7. When possible, represent the problem
and its solution from a number of different
perspectives.

 Principle #8. Remember that someone will maintain
the software.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 8

Communication Principles

 Principle #1. Listen. Try to focus on the speaker’s
words, rather than formulating your response to those
words.

 Principle # 2. Prepare before you communicate.
Spend the time to understand the problem before you
meet with others.

 Principle # 3. Someone should facilitate the activity.
Every communication meeting should have a leader (a
facilitator) to keep the conversation moving in a
productive direction; (2) to mediate any conflict that does
occur, and (3) to ensure than other principles are
followed.

 Principle #4. Face-to-face communication is best.
But it usually works better when some other
representation of the relevant information is present.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 9

Communication Principles

 Principle # 5. Take notes and document decisions. Someone
participating in the communication should serve as a “recorder” and
write down all important points and decisions.

 Principle # 6. Strive for collaboration. Collaboration and consensus
occur when the collective knowledge of members of the team is
combined …

 Principle # 7. Stay focused, modularize your discussion. The
more people involved in any communication, the more likely that
discussion will bounce from one topic to the next.

 Principle # 8. If something is unclear, draw a picture.

 Principle # 9. (a) Once you agree to something, move on; (b) If
you can’t agree to something, move on; (c) If a feature or function
is unclear and cannot be clarified at the moment, move on.

 Principle # 10. Negotiation is not a contest or a game. It works
best when both parties win.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 10

Planning Principles

 Principle #1. Understand the scope of the project.
It’s impossible to use a roadmap if you don’t know where
you’re going. Scope provides the software team with a
destination.

 Principle #2. Involve the customer in the planning
activity. The customer defines priorities and establishes
project constraints.

 Principle #3. Recognize that planning is iterative. A
project plan is never engraved in stone. As work begins,
it very likely that things will change.

 Principle #4. Estimate based on what you know. The
intent of estimation is to provide an indication of effort,
cost, and task duration, based on the team’s current
understanding of the work to be done.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 11

Planning Principles
 Principle #5. Consider risk as you define the plan. If you

have identified risks that have high impact and high probability,
contingency planning is necessary.

 Principle #6. Be realistic. People don’t work 100 percent of
every day.

 Principle #7. Adjust granularity as you define the plan.
Granularity refers to the level of detail that is introduced as a
project plan is developed.

 Principle #8. Define how you intend to ensure quality. The
plan should identify how the software team intends to ensure
quality.

 Principle #9. Describe how you intend to accommodate
change. Even the best planning can be obviated by
uncontrolled change.

 Principle #10. Track the plan frequently and make
adjustments as required. Software projects fall behind
schedule one day at a time.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 12

Modeling Principles

 In software engineering work, two classes of

models can be created:
 Requirements models (also called analysis models)

represent the customer requirements by depicting the

software in three different domains: the information

domain, the functional domain, and the behavioral

domain.

 Design models represent characteristics of the

software that help practitioners to construct it

effectively: the architecture, the user interface, and

component-level detail.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 13

Requirements Modeling Principles

 Principle #1. The information domain of a problem

must be represented and understood.

 Principle #2. The functions that the software

performs must be defined.

 Principle #3. The behavior of the software (as a

consequence of external events) must be

represented.

 Principle #4. The models that depict information,

function, and behavior must be partitioned in a

manner that uncovers detail in a layered (or

hierarchical) fashion.

 Principle #5. The analysis task should move from

essential information toward implementation detail.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 14

Design Modeling Principles

 Principle #1. Design should be traceable to the requirements

model.

 Principle #2. Always consider the architecture of the system to

be built.

 Principle #3. Design of data is as important as design of

processing functions.

 Principle #5. User interface design should be tuned to the needs

of the end-user. However, in every case, it should stress ease of

use.

 Principle #6. Component-level design should be functionally

independent.

 Principle #7. Components should be loosely coupled to one

another and to the external environment.

 Principle #8. Design representations (models) should be easily

understandable.

 Principle #9. The design should be developed iteratively. With

each iteration, the designer should strive for greater simplicity.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 15

Agile Modeling Principles

 Principle #1. The primary goal of the software team is to build software, not
create models.

 Principle #2. Travel light—don’t create more models than you need.

 Principle #3. Strive to produce the simplest model that will describe the
problem or the software.

 Principle #4. Build models in a way that makes them amenable to change.

 Principle #5. Be able to state an explicit purpose for each model that is
created.

 Principle #6. Adapt the models you develop to the system at hand.

 Principle #7. Try to build useful models, but forget about building perfect
models.

 Principle #8. Don’t become dogmatic about the syntax of the model. If it
communicates content successfully, representation is secondary.

 Principle #9. If your instincts tell you a model isn’t right even though it
seems okay on paper, you probably have reason to be concerned.

 Principle #10. Get feedback as soon as you can.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 16

Construction Principles

 The construction activity encompasses a set of

coding and testing tasks that lead to

operational software that is ready for delivery to

the customer or end-user.

 Coding principles and concepts are closely

aligned programming style, programming

languages, and programming methods.

 Testing principles and concepts lead to the

design of tests that systematically uncover

different classes of errors and to do so with a

minimum amount of time and effort.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 17

Preparation Principles

 Before you write one line of code, be sure

you:
• Understand of the problem you’re trying to solve.

• Understand basic design principles and concepts.

• Pick a programming language that meets the needs of

the software to be built and the environment in which it

will operate.

• Select a programming environment that provides tools

that will make your work easier.

• Create a set of unit tests that will be applied once the

component you code is completed.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 18

Coding Principles

 As you begin writing code, be sure you:
• Constrain your algorithms by following structured

programming [Boh00] practice.

• Consider the use of pair programming

• Select data structures that will meet the needs of the design.

• Understand the software architecture and create interfaces

that are consistent with it.

• Keep conditional logic as simple as possible.

• Create nested loops in a way that makes them easily testable.

• Select meaningful variable names and follow other local

coding standards.

• Write code that is self-documenting.

• Create a visual layout (e.g., indentation and blank lines) that

aids understanding.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 19

Validation Principles

 After you’ve completed your first coding

pass, be sure you:
• Conduct a code walkthrough when appropriate.

• Perform unit tests and correct errors you’ve uncovered.

• Refactor the code.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 20

Testing Principles

 Al Davis [Dav95] suggests the following:

 Principle #1. All tests should be traceable to

customer requirements.

 Principle #2. Tests should be planned long before

testing begins.

 Principle #3. The Pareto principle applies to

software testing.

 Principle #4. Testing should begin “in the small”

and progress toward testing “in the large.”

 Principle #5. Exhaustive testing is not possible.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 7/e

(McGraw-Hill, 2009) Slides copyright 2009 by Roger Pressman. 21

Deployment Principles

 Principle #1. Customer expectations for the
software must be managed. Too often, the customer
expects more than the team has promised to deliver, and
disappointment occurs immediately.

 Principle #2. A complete delivery package should be
assembled and tested.

 Principle #3. A support regime must be established
before the software is delivered. An end-user expects
responsiveness and accurate information when a
question or problem arises.

 Principle #4. Appropriate instructional materials
must be provided to end-users.

 Principle #5. Buggy software should be fixed first,
delivered later.

