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2.3  Symbolic Data

All the compound data objects we have used so far were constructed ultimately
from numbers. In this section we extend the representational capability of our
language by introducing the ability to work with arbitrary symbols as data.

2.3.1  Quotation

If we can form compound data using symbols, we can have lists such as

(a b c d)
(23 45 17)
((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can look just like the expressions of our language:

(* (+ 23 45) (+ x 9))

(define (fact n) (if (= n 1) 1 (* n (fact (- n 1)))))

In order to manipulate symbols we need a new element in our language: the
ability to quote a data object. Suppose we want to construct the list (a b). We
can't accomplish this with (list a b), because this expression constructs a list of
the values of a and b rather than the symbols themselves. This issue is well known
in the context of natural languages, where words and sentences may be regarded
either as semantic entities or as character strings (syntactic entities). The common
practice in natural languages is to use quotation marks to indicate that a word or
a sentence is to be treated literally as a string of characters. For instance, the first
letter of ``John'' is clearly ``J.'' If we tell somebody ``say your name aloud,'' we
expect to hear that person's name. However, if we tell somebody ``say `your
name' aloud,'' we expect to hear the words ``your name.'' Note that we are forced
to nest quotation marks to describe what somebody else might say.32

We can follow this same practice to identify lists and symbols that are to be
treated as data objects rather than as expressions to be evaluated. However, our
format for quoting differs from that of natural languages in that we place a
quotation mark (traditionally, the single quote symbol ') only at the beginning of
the object to be quoted. We can get away with this in Scheme syntax because we
rely on blanks and parentheses to delimit objects. Thus, the meaning of the single
quote character is to quote the next object.33

Now we can distinguish between symbols and their values:

(define a 1)

(define b 2)

(list a b)
(1 2)

(list 'a 'b)
(a b)
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(list 'a b)
(a 2)

Quotation also allows us to type in compound objects, using the conventional
printed representation for lists:34

(car '(a b c))
a

(cdr '(a b c))
(b c)

In keeping with this, we can obtain the empty list by evaluating '(), and thus
dispense with the variable nil.

One additional primitive used in manipulating symbols is eq?, which takes two
symbols as arguments and tests whether they are the same.35 Using eq?, we can
implement a useful procedure called memq. This takes two arguments, a symbol and
a list. If the symbol is not contained in the list (i.e., is not eq? to any item in the
list), then memq returns false. Otherwise, it returns the sublist of the list beginning
with the first occurrence of the symbol:

(define (memq item x)
  (cond ((null? x) false)
        ((eq? item (car x)) x)
        (else (memq item (cdr x)))))

For example, the value of

(memq 'apple '(pear banana prune))

is false, whereas the value of

(memq 'apple '(x (apple sauce) y apple pear))

is (apple pear).

Exercise 2.53.  What would the interpreter print in response to evaluating each of
the following expressions?

(list 'a 'b 'c)

(list (list 'george))
(cdr '((x1 x2) (y1 y2)))

(cadr '((x1 x2) (y1 y2)))
(pair? (car '(a short list)))
(memq 'red '((red shoes) (blue socks)))

(memq 'red '(red shoes blue socks))

Exercise 2.54.  Two lists are said to be equal? if they contain equal elements
arranged in the same order. For example,

(equal? '(this is a list) '(this is a list))

is true, but

(equal? '(this is a list) '(this (is a) list))
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is false. To be more precise, we can define equal? recursively in terms of the basic
eq? equality of symbols by saying that a and b are equal? if they are both symbols
and the symbols are eq?, or if they are both lists such that (car a) is equal? to (car
b) and (cdr a) is equal? to (cdr b). Using this idea, implement equal? as a
procedure.36

Exercise 2.55.  Eva Lu Ator types to the interpreter the expression

(car ''abracadabra)

To her surprise, the interpreter prints back quote. Explain.

2.3.2  Example: Symbolic Differentiation

As an illustration of symbol manipulation and a further illustration of data
abstraction, consider the design of a procedure that performs symbolic
differentiation of algebraic expressions. We would like the procedure to take as
arguments an algebraic expression and a variable and to return the derivative of
the expression with respect to the variable. For example, if the arguments to the

procedure are ax2 + bx + c and x, the procedure should return 2ax + b. Symbolic
differentiation is of special historical significance in Lisp. It was one of the
motivating examples behind the development of a computer language for symbol
manipulation. Furthermore, it marked the beginning of the line of research that
led to the development of powerful systems for symbolic mathematical work,
which are currently being used by a growing number of applied mathematicians
and physicists.

In developing the symbolic-differentiation program, we will follow the same
strategy of data abstraction that we followed in developing the rational-number
system of section 2.1.1. That is, we will first define a differentiation algorithm that
operates on abstract objects such as ``sums,'' ``products,'' and ``variables'' without
worrying about how these are to be represented. Only afterward will we address
the representation problem.

The differentiation program with abstract data

In order to keep things simple, we will consider a very simple symbolic-
differentiation program that handles expressions that are built up using only the
operations of addition and multiplication with two arguments. Differentiation of
any such expression can be carried out by applying the following reduction rules:
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Observe that the latter two rules are recursive in nature. That is, to obtain the
derivative of a sum we first find the derivatives of the terms and add them. Each
of the terms may in turn be an expression that needs to be decomposed.
Decomposing into smaller and smaller pieces will eventually produce pieces that
are either constants or variables, whose derivatives will be either 0 or 1.

To embody these rules in a procedure we indulge in a little wishful thinking, as
we did in designing the rational-number implementation. If we had a means for
representing algebraic expressions, we should be able to tell whether an
expression is a sum, a product, a constant, or a variable. We should be able to
extract the parts of an expression. For a sum, for example we want to be able to
extract the addend (first term) and the augend (second term). We should also be
able to construct expressions from parts. Let us assume that we already have
procedures to implement the following selectors, constructors, and predicates:

(variable? e) Is e a variable?
(same-variable? v1 v2) Are v1 and v2 the same variable?
(sum? e) Is e a sum?
(addend e) Addend of the sum e.
(augend e) Augend of the sum e.
(make-sum a1 a2) Construct the sum of a1 and a2.
(product? e) Is e a product?
(multiplier e) Multiplier of the product e.
(multiplicand e) Multiplicand of the product e.
(make-product m1 m2) Construct the product of m1 and m2.

Using these, and the primitive predicate number?, which identifies numbers, we can
express the differentiation rules as the following procedure:

(define (deriv exp var)
  (cond ((number? exp) 0)
        ((variable? exp)
         (if (same-variable? exp var) 1 0))
        ((sum? exp)
         (make-sum (deriv (addend exp) var)
                   (deriv (augend exp) var)))
        ((product? exp)
         (make-sum
           (make-product (multiplier exp)
                         (deriv (multiplicand exp) var))
           (make-product (deriv (multiplier exp) var)
                         (multiplicand exp))))
        (else
         (error "unknown expression type -- DERIV" exp))))

This deriv procedure incorporates the complete differentiation algorithm. Since it
is expressed in terms of abstract data, it will work no matter how we choose to
represent algebraic expressions, as long as we design a proper set of selectors
and constructors. This is the issue we must address next.

Representing algebraic expressions

We can imagine many ways to use list structure to represent algebraic
expressions. For example, we could use lists of symbols that mirror the usual
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algebraic notation, representing ax + b as the list (a * x + b). However, one
especially straightforward choice is to use the same parenthesized prefix notation
that Lisp uses for combinations; that is, to represent ax + b as (+ (* a x) b). Then
our data representation for the differentiation problem is as follows:

The variables are symbols. They are identified by the primitive predicate
symbol?:

(define (variable? x) (symbol? x))

Two variables are the same if the symbols representing them are eq?:

(define (same-variable? v1 v2)
  (and (variable? v1) (variable? v2) (eq? v1 v2)))

Sums and products are constructed as lists:

(define (make-sum a1 a2) (list '+ a1 a2))

(define (make-product m1 m2) (list '* m1 m2))

A sum is a list whose first element is the symbol +:

(define (sum? x)
  (and (pair? x) (eq? (car x) '+)))

The addend is the second item of the sum list:

(define (addend s) (cadr s))

The augend is the third item of the sum list:

(define (augend s) (caddr s))

A product is a list whose first element is the symbol *:

(define (product? x)
  (and (pair? x) (eq? (car x) '*)))

The multiplier is the second item of the product list:

(define (multiplier p) (cadr p))

The multiplicand is the third item of the product list:

(define (multiplicand p) (caddr p))

Thus, we need only combine these with the algorithm as embodied by deriv in
order to have a working symbolic-differentiation program. Let us look at some
examples of its behavior:

(deriv '(+ x 3) 'x)
(+ 1 0)
(deriv '(* x y) 'x)
(+ (* x 0) (* 1 y))
(deriv '(* (* x y) (+ x 3)) 'x)
(+ (* (* x y) (+ 1 0))
   (* (+ (* x 0) (* 1 y))
      (+  x 3)))



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH16.html#%_sec_2.3 6/22

The program produces answers that are correct; however, they are unsimplified. It
is true that

but we would like the program to know that x · 0 = 0, 1 · y = y, and 0 + y = y.
The answer for the second example should have been simply y. As the third
example shows, this becomes a serious issue when the expressions are complex.

Our difficulty is much like the one we encountered with the rational-number
implementation: we haven't reduced answers to simplest form. To accomplish the
rational-number reduction, we needed to change only the constructors and the
selectors of the implementation. We can adopt a similar strategy here. We won't
change deriv at all. Instead, we will change make-sum so that if both summands are
numbers, make-sum will add them and return their sum. Also, if one of the
summands is 0, then make-sum will return the other summand.

(define (make-sum a1 a2)
  (cond ((=number? a1 0) a2)
        ((=number? a2 0) a1)
        ((and (number? a1) (number? a2)) (+ a1 a2))
        (else (list '+ a1 a2))))

This uses the procedure =number?, which checks whether an expression is equal to a
given number:

(define (=number? exp num)
  (and (number? exp) (= exp num)))

Similarly, we will change make-product to build in the rules that 0 times anything is
0 and 1 times anything is the thing itself:

(define (make-product m1 m2)
  (cond ((or (=number? m1 0) (=number? m2 0)) 0)
        ((=number? m1 1) m2)
        ((=number? m2 1) m1)
        ((and (number? m1) (number? m2)) (* m1 m2))
        (else (list '* m1 m2))))

Here is how this version works on our three examples:

(deriv '(+ x 3) 'x)
1
(deriv '(* x y) 'x)
y
(deriv '(* (* x y) (+ x 3)) 'x)
(+ (* x y) (* y (+ x 3)))

Although this is quite an improvement, the third example shows that there is still
a long way to go before we get a program that puts expressions into a form that
we might agree is ``simplest.'' The problem of algebraic simplification is complex
because, among other reasons, a form that may be simplest for one purpose may
not be for another.

Exercise 2.56.  Show how to extend the basic differentiator to handle more kinds
of expressions. For instance, implement the differentiation rule
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by adding a new clause to the deriv program and defining appropriate
procedures exponentiation?, base, exponent, and make-exponentiation. (You may use the
symbol ** to denote exponentiation.) Build in the rules that anything raised to the
power 0 is 1 and anything raised to the power 1 is the thing itself.

Exercise 2.57.  Extend the differentiation program to handle sums and products
of arbitrary numbers of (two or more) terms. Then the last example above could
be expressed as

(deriv '(* x y (+ x 3)) 'x)

Try to do this by changing only the representation for sums and products,
without changing the deriv procedure at all. For example, the addend of a sum
would be the first term, and the augend would be the sum of the rest of the terms.

Exercise 2.58.  Suppose we want to modify the differentiation program so that it
works with ordinary mathematical notation, in which + and * are infix rather than
prefix operators. Since the differentiation program is defined in terms of abstract
data, we can modify it to work with different representations of expressions solely
by changing the predicates, selectors, and constructors that define the
representation of the algebraic expressions on which the differentiator is to
operate.

a. Show how to do this in order to differentiate algebraic expressions presented
in infix form, such as (x + (3 * (x + (y + 2)))). To simplify the task, assume that +
and * always take two arguments and that expressions are fully parenthesized.

b. The problem becomes substantially harder if we allow standard algebraic
notation, such as (x + 3 * (x + y + 2)), which drops unnecessary parentheses and
assumes that multiplication is done before addition. Can you design appropriate
predicates, selectors, and constructors for this notation such that our derivative
program still works?

2.3.3  Example: Representing Sets

In the previous examples we built representations for two kinds of compound
data objects: rational numbers and algebraic expressions. In one of these
examples we had the choice of simplifying (reducing) the expressions at either
construction time or selection time, but other than that the choice of a
representation for these structures in terms of lists was straightforward. When we
turn to the representation of sets, the choice of a representation is not so
obvious. Indeed, there are a number of possible representations, and they differ
significantly from one another in several ways.

Informally, a set is simply a collection of distinct objects. To give a more precise
definition we can employ the method of data abstraction. That is, we define ``set''
by specifying the operations that are to be used on sets. These are union-set,
intersection-set, element-of-set?, and adjoin-set. Element-of-set? is a predicate that
determines whether a given element is a member of a set. Adjoin-set takes an
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object and a set as arguments and returns a set that contains the elements of the
original set and also the adjoined element. Union-set computes the union of two
sets, which is the set containing each element that appears in either argument.
Intersection-set computes the intersection of two sets, which is the set containing
only elements that appear in both arguments. From the viewpoint of data
abstraction, we are free to design any representation that implements these
operations in a way consistent with the interpretations given above.37

Sets as unordered lists

One way to represent a set is as a list of its elements in which no element
appears more than once. The empty set is represented by the empty list. In this
representation, element-of-set? is similar to the procedure memq of section 2.3.1. It
uses equal? instead of eq? so that the set elements need not be symbols:

(define (element-of-set? x set)
  (cond ((null? set) false)
        ((equal? x (car set)) true)
        (else (element-of-set? x (cdr set)))))

Using this, we can write adjoin-set. If the object to be adjoined is already in the
set, we just return the set. Otherwise, we use cons to add the object to the list
that represents the set:

(define (adjoin-set x set)
  (if (element-of-set? x set)
      set
      (cons x set)))

For intersection-set we can use a recursive strategy. If we know how to form the
intersection of set2 and the cdr of set1, we only need to decide whether to include
the car of set1 in this. But this depends on whether (car set1) is also in set2. Here
is the resulting procedure:

(define (intersection-set set1 set2)
  (cond ((or (null? set1) (null? set2)) '())
        ((element-of-set? (car set1) set2)        
         (cons (car set1)
               (intersection-set (cdr set1) set2)))
        (else (intersection-set (cdr set1) set2))))

In designing a representation, one of the issues we should be concerned with is
efficiency. Consider the number of steps required by our set operations. Since
they all use element-of-set?, the speed of this operation has a major impact on the
efficiency of the set implementation as a whole. Now, in order to check whether
an object is a member of a set, element-of-set? may have to scan the entire set. (In
the worst case, the object turns out not to be in the set.) Hence, if the set has n
elements, element-of-set? might take up to n steps. Thus, the number of steps
required grows as (n). The number of steps required by adjoin-set, which uses
this operation, also grows as (n). For intersection-set, which does an element-of-set?
check for each element of set1, the number of steps required grows as the

product of the sizes of the sets involved, or (n2) for two sets of size n. The same
will be true of union-set.
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Exercise 2.59.  Implement the union-set operation for the unordered-list
representation of sets.

Exercise 2.60.  We specified that a set would be represented as a list with no
duplicates. Now suppose we allow duplicates. For instance, the set {1,2,3} could
be represented as the list (2 3 2 1 3 2 2). Design procedures element-of-set?, adjoin-
set, union-set, and intersection-set that operate on this representation. How does
the efficiency of each compare with the corresponding procedure for the non-
duplicate representation? Are there applications for which you would use this
representation in preference to the non-duplicate one?

Sets as ordered lists

One way to speed up our set operations is to change the representation so that
the set elements are listed in increasing order. To do this, we need some way to
compare two objects so that we can say which is bigger. For example, we could
compare symbols lexicographically, or we could agree on some method for
assigning a unique number to an object and then compare the elements by
comparing the corresponding numbers. To keep our discussion simple, we will
consider only the case where the set elements are numbers, so that we can
compare elements using > and <. We will represent a set of numbers by listing its
elements in increasing order. Whereas our first representation above allowed us
to represent the set {1,3,6,10} by listing the elements in any order, our new
representation allows only the list (1 3 6 10).

One advantage of ordering shows up in element-of-set?: In checking for the
presence of an item, we no longer have to scan the entire set. If we reach a set
element that is larger than the item we are looking for, then we know that the
item is not in the set:

(define (element-of-set? x set)
  (cond ((null? set) false)
        ((= x (car set)) true)
        ((< x (car set)) false)
        (else (element-of-set? x (cdr set)))))

How many steps does this save? In the worst case, the item we are looking for
may be the largest one in the set, so the number of steps is the same as for the
unordered representation. On the other hand, if we search for items of many
different sizes we can expect that sometimes we will be able to stop searching at
a point near the beginning of the list and that other times we will still need to
examine most of the list. On the average we should expect to have to examine
about half of the items in the set. Thus, the average number of steps required will
be about n/2. This is still (n) growth, but it does save us, on the average, a factor
of 2 in number of steps over the previous implementation.

We obtain a more impressive speedup with intersection-set. In the unordered

representation this operation required (n2) steps, because we performed a
complete scan of set2 for each element of set1. But with the ordered
representation, we can use a more clever method. Begin by comparing the initial
elements, x1 and x2, of the two sets. If x1 equals x2, then that gives an element of
the intersection, and the rest of the intersection is the intersection of the cdrs of
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the two sets. Suppose, however, that x1 is less than x2. Since x2 is the smallest
element in set2, we can immediately conclude that x1 cannot appear anywhere in
set2 and hence is not in the intersection. Hence, the intersection is equal to the
intersection of set2 with the cdr of set1. Similarly, if x2 is less than x1, then the
intersection is given by the intersection of set1 with the cdr of set2. Here is the
procedure:

(define (intersection-set set1 set2)
  (if (or (null? set1) (null? set2))
      '()    
      (let ((x1 (car set1)) (x2 (car set2)))
        (cond ((= x1 x2)
               (cons x1
                     (intersection-set (cdr set1)
                                       (cdr set2))))
              ((< x1 x2)
               (intersection-set (cdr set1) set2))
              ((< x2 x1)
               (intersection-set set1 (cdr set2)))))))

To estimate the number of steps required by this process, observe that at each
step we reduce the intersection problem to computing intersections of smaller
sets -- removing the first element from set1 or set2 or both. Thus, the number of
steps required is at most the sum of the sizes of set1 and set2, rather than the
product of the sizes as with the unordered representation. This is (n) growth

rather than (n2) -- a considerable speedup, even for sets of moderate size.

Exercise 2.61.  Give an implementation of adjoin-set using the ordered
representation. By analogy with element-of-set? show how to take advantage of the
ordering to produce a procedure that requires on the average about half as many
steps as with the unordered representation.

Exercise 2.62.  Give a (n) implementation of union-set for sets represented as
ordered lists.

Sets as binary trees

We can do better than the ordered-list representation by arranging the set
elements in the form of a tree. Each node of the tree holds one element of the
set, called the ``entry'' at that node, and a link to each of two other (possibly
empty) nodes. The ``left'' link points to elements smaller than the one at the
node, and the ``right'' link to elements greater than the one at the node.
Figure 2.16 shows some trees that represent the set {1,3,5,7,9,11}. The same set
may be represented by a tree in a number of different ways. The only thing we
require for a valid representation is that all elements in the left subtree be smaller
than the node entry and that all elements in the right subtree be larger.
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Figure 2.16:  Various binary trees that represent the set { 1,3,5,7,9,11 }.

The advantage of the tree representation is this: Suppose we want to check
whether a number x is contained in a set. We begin by comparing x with the
entry in the top node. If x is less than this, we know that we need only search the
left subtree; if x is greater, we need only search the right subtree. Now, if the tree
is ``balanced,'' each of these subtrees will be about half the size of the original.
Thus, in one step we have reduced the problem of searching a tree of size n to
searching a tree of size n/2. Since the size of the tree is halved at each step, we
should expect that the number of steps needed to search a tree of size n grows
as (log n).38 For large sets, this will be a significant speedup over the previous
representations.

We can represent trees by using lists. Each node will be a list of three items: the
entry at the node, the left subtree, and the right subtree. A left or a right subtree
of the empty list will indicate that there is no subtree connected there. We can
describe this representation by the following procedures:39

(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
  (list entry left right))

Now we can write the element-of-set? procedure using the strategy described
above:

(define (element-of-set? x set)
  (cond ((null? set) false)
        ((= x (entry set)) true)
        ((< x (entry set))
         (element-of-set? x (left-branch set)))
        ((> x (entry set))
         (element-of-set? x (right-branch set)))))

Adjoining an item to a set is implemented similarly and also requires (log n)
steps. To adjoin an item x, we compare x with the node entry to determine
whether x should be added to the right or to the left branch, and having adjoined
x to the appropriate branch we piece this newly constructed branch together with
the original entry and the other branch. If x is equal to the entry, we just return
the node. If we are asked to adjoin x to an empty tree, we generate a tree that
has x as the entry and empty right and left branches. Here is the procedure:

(define (adjoin-set x set)
  (cond ((null? set) (make-tree x '() '()))
        ((= x (entry set)) set)
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        ((< x (entry set))
         (make-tree (entry set) 
                    (adjoin-set x (left-branch set))
                    (right-branch set)))
        ((> x (entry set))
         (make-tree (entry set)
                    (left-branch set)
                    (adjoin-set x (right-branch set))))))

The above claim that searching the tree can be performed in a logarithmic
number of steps rests on the assumption that the tree is ``balanced,'' i.e., that the
left and the right subtree of every tree have approximately the same number of
elements, so that each subtree contains about half the elements of its parent. But
how can we be certain that the trees we construct will be balanced? Even if we
start with a balanced tree, adding elements with adjoin-set may produce an
unbalanced result. Since the position of a newly adjoined element depends on
how the element compares with the items already in the set, we can expect that
if we add elements ``randomly'' the tree will tend to be balanced on the average.
But this is not a guarantee. For example, if we start with an empty set and adjoin
the numbers 1 through 7 in sequence we end up with the highly unbalanced tree
shown in figure 2.17. In this tree all the left subtrees are empty, so it has no
advantage over a simple ordered list. One way to solve this problem is to define
an operation that transforms an arbitrary tree into a balanced tree with the same
elements. Then we can perform this transformation after every few adjoin-set
operations to keep our set in balance. There are also other ways to solve this
problem, most of which involve designing new data structures for which
searching and insertion both can be done in (log n) steps.40

Figure 2.17:  Unbalanced tree produced by adjoining 1 through 7 in sequence.

Exercise 2.63.  Each of the following two procedures converts a binary tree to a
list.

(define (tree->list-1 tree)
  (if (null? tree)
      '()
      (append (tree->list-1 (left-branch tree))
              (cons (entry tree)
                    (tree->list-1 (right-branch tree))))))
(define (tree->list-2 tree)
  (define (copy-to-list tree result-list)
    (if (null? tree)
        result-list
        (copy-to-list (left-branch tree)
                      (cons (entry tree)
                            (copy-to-list (right-branch tree)
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                                          result-list)))))
  (copy-to-list tree '()))

a. Do the two procedures produce the same result for every tree? If not, how do
the results differ? What lists do the two procedures produce for the trees in
figure 2.16?

b. Do the two procedures have the same order of growth in the number of steps
required to convert a balanced tree with n elements to a list? If not, which one
grows more slowly?

Exercise 2.64.  The following procedure list->tree converts an ordered list to a
balanced binary tree. The helper procedure partial-tree takes as arguments an
integer n and list of at least n elements and constructs a balanced tree containing
the first n elements of the list. The result returned by partial-tree is a pair (formed
with cons) whose car is the constructed tree and whose cdr is the list of elements
not included in the tree.

(define (list->tree elements)
  (car (partial-tree elements (length elements))))

(define (partial-tree elts n)
  (if (= n 0)
      (cons '() elts)
      (let ((left-size (quotient (- n 1) 2)))
        (let ((left-result (partial-tree elts left-size)))
          (let ((left-tree (car left-result))
                (non-left-elts (cdr left-result))
                (right-size (- n (+ left-size 1))))
            (let ((this-entry (car non-left-elts))
                  (right-result (partial-tree (cdr non-left-elts)
                                              right-size)))
              (let ((right-tree (car right-result))
                    (remaining-elts (cdr right-result)))
                (cons (make-tree this-entry left-tree right-tree)
                      remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you can how partial-tree works.
Draw the tree produced by list->tree for the list (1 3 5 7 9 11).

b. What is the order of growth in the number of steps required by list->tree to
convert a list of n elements?

Exercise 2.65.  Use the results of exercises 2.63 and  2.64 to give (n)
implementations of union-set and intersection-set for sets implemented as
(balanced) binary trees.41

Sets and information retrieval

We have examined options for using lists to represent sets and have seen how
the choice of representation for a data object can have a large impact on the
performance of the programs that use the data. Another reason for concentrating
on sets is that the techniques discussed here appear again and again in
applications involving information retrieval.

Consider a data base containing a large number of individual records, such as the
personnel files for a company or the transactions in an accounting system. A
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typical data-management system spends a large amount of time accessing or
modifying the data in the records and therefore requires an efficient method for
accessing records. This is done by identifying a part of each record to serve as an
identifying key. A key can be anything that uniquely identifies the record. For a
personnel file, it might be an employee's ID number. For an accounting system, it
might be a transaction number. Whatever the key is, when we define the record
as a data structure we should include a key selector procedure that retrieves the
key associated with a given record.

Now we represent the data base as a set of records. To locate the record with a
given key we use a procedure lookup, which takes as arguments a key and a data
base and which returns the record that has that key, or false if there is no such
record. Lookup is implemented in almost the same way as element-of-set?. For
example, if the set of records is implemented as an unordered list, we could use

(define (lookup given-key set-of-records)
  (cond ((null? set-of-records) false)
        ((equal? given-key (key (car set-of-records)))
         (car set-of-records))
        (else (lookup given-key (cdr set-of-records)))))

Of course, there are better ways to represent large sets than as unordered lists.
Information-retrieval systems in which records have to be ``randomly accessed''
are typically implemented by a tree-based method, such as the binary-tree
representation discussed previously. In designing such a system the methodology
of data abstraction can be a great help. The designer can create an initial
implementation using a simple, straightforward representation such as unordered
lists. This will be unsuitable for the eventual system, but it can be useful in
providing a ``quick and dirty'' data base with which to test the rest of the system.
Later on, the data representation can be modified to be more sophisticated. If the
data base is accessed in terms of abstract selectors and constructors, this change
in representation will not require any changes to the rest of the system.

Exercise 2.66.  Implement the lookup procedure for the case where the set of
records is structured as a binary tree, ordered by the numerical values of the
keys.

2.3.4  Example: Huffman Encoding Trees

This section provides practice in the use of list structure and data abstraction to
manipulate sets and trees. The application is to methods for representing data as
sequences of ones and zeros (bits). For example, the ASCII standard code used to
represent text in computers encodes each character as a sequence of seven bits.

Using seven bits allows us to distinguish 27, or 128, possible different characters.
In general, if we want to distinguish n different symbols, we will need to use log2
n bits per symbol. If all our messages are made up of the eight symbols A, B, C,
D, E, F, G, and H, we can choose a code with three bits per character, for example

A 000 C 010 E 100 G 110

B 001 D 011 F 101 H 111

With this code, the message
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BACADAEAFABBAAAGAH

is encoded as the string of 54 bits

001000010000011000100000101000001001000000000110000111

Codes such as ASCII and the A-through-H code above are known as fixed-length
codes, because they represent each symbol in the message with the same
number of bits. It is sometimes advantageous to use variable-length codes, in
which different symbols may be represented by different numbers of bits. For
example, Morse code does not use the same number of dots and dashes for each
letter of the alphabet. In particular, E, the most frequent letter, is represented by a
single dot. In general, if our messages are such that some symbols appear very
frequently and some very rarely, we can encode data more efficiently (i.e., using
fewer bits per message) if we assign shorter codes to the frequent symbols.
Consider the following alternative code for the letters A through H:

A 0 C 1010 E 1100 G 1110

B 100 D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

This string contains 42 bits, so it saves more than 20% in space in comparison
with the fixed-length code shown above.

One of the difficulties of using a variable-length code is knowing when you have
reached the end of a symbol in reading a sequence of zeros and ones. Morse
code solves this problem by using a special separator code (in this case, a pause)
after the sequence of dots and dashes for each letter. Another solution is to
design the code in such a way that no complete code for any symbol is the
beginning (or prefix) of the code for another symbol. Such a code is called a
prefix code. In the example above, A is encoded by 0 and B is encoded by 100,
so no other symbol can have a code that begins with 0 or with 100.

In general, we can attain significant savings if we use variable-length prefix codes
that take advantage of the relative frequencies of the symbols in the messages to
be encoded. One particular scheme for doing this is called the Huffman encoding
method, after its discoverer, David Huffman. A Huffman code can be represented
as a binary tree whose leaves are the symbols that are encoded. At each non-leaf
node of the tree there is a set containing all the symbols in the leaves that lie
below the node. In addition, each symbol at a leaf is assigned a weight (which is
its relative frequency), and each non-leaf node contains a weight that is the sum
of all the weights of the leaves lying below it. The weights are not used in the
encoding or the decoding process. We will see below how they are used to help
construct the tree.
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Figure 2.18:  A Huffman encoding tree.

Figure 2.18 shows the Huffman tree for the A-through-H code given above. The
weights at the leaves indicate that the tree was designed for messages in which A
appears with relative frequency 8, B with relative frequency 3, and the other
letters each with relative frequency 1.

Given a Huffman tree, we can find the encoding of any symbol by starting at the
root and moving down until we reach the leaf that holds the symbol. Each time
we move down a left branch we add a 0 to the code, and each time we move
down a right branch we add a 1. (We decide which branch to follow by testing to
see which branch either is the leaf node for the symbol or contains the symbol in
its set.) For example, starting from the root of the tree in figure 2.18, we arrive at
the leaf for D by following a right branch, then a left branch, then a right branch,
then a right branch; hence, the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin at the root and use
the successive zeros and ones of the bit sequence to determine whether to move
down the left or the right branch. Each time we come to a leaf, we have
generated a new symbol in the message, at which point we start over from the
root of the tree to find the next symbol. For example, suppose we are given the
tree above and the sequence 10001010. Starting at the root, we move down the
right branch, (since the first bit of the string is 1), then down the left branch
(since the second bit is 0), then down the left branch (since the third bit is also 0).
This brings us to the leaf for B, so the first symbol of the decoded message is B.
Now we start again at the root, and we make a left move because the next bit in
the string is 0. This brings us to the leaf for A. Then we start again at the root
with the rest of the string 1010, so we move right, left, right, left and reach C.
Thus, the entire message is BAC.

Generating Huffman trees

Given an ``alphabet'' of symbols and their relative frequencies, how do we
construct the ``best'' code? (In other words, which tree will encode messages with
the fewest bits?) Huffman gave an algorithm for doing this and showed that the
resulting code is indeed the best variable-length code for messages where the
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relative frequency of the symbols matches the frequencies with which the code
was constructed. We will not prove this optimality of Huffman codes here, but we
will show how Huffman trees are constructed.42

The algorithm for generating a Huffman tree is very simple. The idea is to arrange
the tree so that the symbols with the lowest frequency appear farthest away from
the root. Begin with the set of leaf nodes, containing symbols and their
frequencies, as determined by the initial data from which the code is to be
constructed. Now find two leaves with the lowest weights and merge them to
produce a node that has these two nodes as its left and right branches. The
weight of the new node is the sum of the two weights. Remove the two leaves
from the original set and replace them by this new node. Now continue this
process. At each step, merge two nodes with the smallest weights, removing
them from the set and replacing them with a node that has these two as its left
and right branches. The process stops when there is only one node left, which is
the root of the entire tree. Here is how the Huffman tree of figure 2.18 was
generated:

Initial leaves {(A 8) (B 3) (C 1) (D 1) (E 1) (F 1) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) (E 1) (F 1) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) ({G H} 2)}

Merge {(A 8) (B 3) ({C D} 2) ({E F G H} 4)}

Merge {(A 8) ({B C D} 5) ({E F G H} 4)}

Merge {(A 8) ({B C D E F G H} 9)}

Final merge {({A B C D E F G H} 17)}

The algorithm does not always specify a unique tree, because there may not be
unique smallest-weight nodes at each step. Also, the choice of the order in which
the two nodes are merged (i.e., which will be the right branch and which will be
the left branch) is arbitrary.

Representing Huffman trees

In the exercises below we will work with a system that uses Huffman trees to
encode and decode messages and generates Huffman trees according to the
algorithm outlined above. We will begin by discussing how trees are represented.

Leaves of the tree are represented by a list consisting of the symbol leaf, the
symbol at the leaf, and the weight:

(define (make-leaf symbol weight)
  (list 'leaf symbol weight))
(define (leaf? object)
  (eq? (car object) 'leaf))
(define (symbol-leaf x) (cadr x))
(define (weight-leaf x) (caddr x))

A general tree will be a list of a left branch, a right branch, a set of symbols, and
a weight. The set of symbols will be simply a list of the symbols, rather than
some more sophisticated set representation. When we make a tree by merging
two nodes, we obtain the weight of the tree as the sum of the weights of the
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nodes, and the set of symbols as the union of the sets of symbols for the nodes.
Since our symbol sets are represented as lists, we can form the union by using
the append procedure we defined in section 2.2.1:

(define (make-code-tree left right)
  (list left
        right
        (append (symbols left) (symbols right))
        (+ (weight left) (weight right))))

If we make a tree in this way, we have the following selectors:

(define (left-branch tree) (car tree))

(define (right-branch tree) (cadr tree))
(define (symbols tree)
  (if (leaf? tree)
      (list (symbol-leaf tree))
      (caddr tree)))
(define (weight tree)
  (if (leaf? tree)
      (weight-leaf tree)
      (cadddr tree)))

The procedures symbols and weight must do something slightly different depending
on whether they are called with a leaf or a general tree. These are simple
examples of generic procedures (procedures that can handle more than one kind
of data), which we will have much more to say about in sections 2.4 and 2.5.

The decoding procedure

The following procedure implements the decoding algorithm. It takes as
arguments a list of zeros and ones, together with a Huffman tree.

(define (decode bits tree)
  (define (decode-1 bits current-branch)
    (if (null? bits)
        '()
        (let ((next-branch
               (choose-branch (car bits) current-branch)))
          (if (leaf? next-branch)
              (cons (symbol-leaf next-branch)
                    (decode-1 (cdr bits) tree))
              (decode-1 (cdr bits) next-branch)))))
  (decode-1 bits tree))
(define (choose-branch bit branch)
  (cond ((= bit 0) (left-branch branch))
        ((= bit 1) (right-branch branch))
        (else (error "bad bit -- CHOOSE-BRANCH" bit))))

The procedure decode-1 takes two arguments: the list of remaining bits and the
current position in the tree. It keeps moving ``down'' the tree, choosing a left or a
right branch according to whether the next bit in the list is a zero or a one. (This
is done with the procedure choose-branch.) When it reaches a leaf, it returns the
symbol at that leaf as the next symbol in the message by consing it onto the
result of decoding the rest of the message, starting at the root of the tree. Note
the error check in the final clause of choose-branch, which complains if the
procedure finds something other than a zero or a one in the input data.

Sets of weighted elements
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In our representation of trees, each non-leaf node contains a set of symbols,
which we have represented as a simple list. However, the tree-generating
algorithm discussed above requires that we also work with sets of leaves and
trees, successively merging the two smallest items. Since we will be required to
repeatedly find the smallest item in a set, it is convenient to use an ordered
representation for this kind of set.

We will represent a set of leaves and trees as a list of elements, arranged in
increasing order of weight. The following adjoin-set procedure for constructing
sets is similar to the one described in exercise 2.61; however, items are compared
by their weights, and the element being added to the set is never already in it.

(define (adjoin-set x set)
  (cond ((null? set) (list x))
        ((< (weight x) (weight (car set))) (cons x set))
        (else (cons (car set)
                    (adjoin-set x (cdr set))))))

The following procedure takes a list of symbol-frequency pairs such as ((A 4) (B 2)
(C 1) (D 1)) and constructs an initial ordered set of leaves, ready to be merged
according to the Huffman algorithm:

(define (make-leaf-set pairs)
  (if (null? pairs)
      '()
      (let ((pair (car pairs)))
        (adjoin-set (make-leaf (car pair)    ; symbol
                               (cadr pair))  ; frequency
                    (make-leaf-set (cdr pairs))))))

Exercise 2.67.  Define an encoding tree and a sample message:

(define sample-tree
  (make-code-tree (make-leaf 'A 4)
                  (make-code-tree
                   (make-leaf 'B 2)
                   (make-code-tree (make-leaf 'D 1)
                                   (make-leaf 'C 1)))))

(define sample-message '(0 1 1 0 0 1 0 1 0 1 1 1 0))

Use the decode procedure to decode the message, and give the result.

Exercise 2.68.  The encode procedure takes as arguments a message and a tree
and produces the list of bits that gives the encoded message.

(define (encode message tree)
  (if (null? message)
      '()
      (append (encode-symbol (car message) tree)
              (encode (cdr message) tree))))

Encode-symbol is a procedure, which you must write, that returns the list of bits that
encodes a given symbol according to a given tree. You should design encode-symbol
so that it signals an error if the symbol is not in the tree at all. Test your
procedure by encoding the result you obtained in exercise 2.67 with the sample
tree and seeing whether it is the same as the original sample message.
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Exercise 2.69.  The following procedure takes as its argument a list of symbol-
frequency pairs (where no symbol appears in more than one pair) and generates
a Huffman encoding tree according to the Huffman algorithm.

(define (generate-huffman-tree pairs)
  (successive-merge (make-leaf-set pairs)))

Make-leaf-set is the procedure given above that transforms the list of pairs into an
ordered set of leaves. Successive-merge is the procedure you must write, using make-
code-tree to successively merge the smallest-weight elements of the set until there
is only one element left, which is the desired Huffman tree. (This procedure is
slightly tricky, but not really complicated. If you find yourself designing a complex
procedure, then you are almost certainly doing something wrong. You can take
significant advantage of the fact that we are using an ordered set representation.)

Exercise 2.70.  The following eight-symbol alphabet with associated relative
frequencies was designed to efficiently encode the lyrics of 1950s rock songs.
(Note that the ``symbols'' of an ``alphabet'' need not be individual letters.)

A 2 NA 16

BOOM 1 SHA 3

GET 2 YIP 9

JOB 2 WAH 1

Use generate-huffman-tree (exercise 2.69) to generate a corresponding Huffman tree,
and use encode (exercise 2.68) to encode the following message:

Get a job

Sha na na na na na na na na

Get a job

Sha na na na na na na na na

Wah yip yip yip yip yip yip yip yip yip

Sha boom

How many bits are required for the encoding? What is the smallest number of
bits that would be needed to encode this song if we used a fixed-length code for
the eight-symbol alphabet?

Exercise 2.71.  Suppose we have a Huffman tree for an alphabet of n symbols,

and that the relative frequencies of the symbols are 1, 2, 4, ..., 2n-1. Sketch the
tree for n=5; for n=10. In such a tree (for general n) how many bits are required
to encode the most frequent symbol? the least frequent symbol?

Exercise 2.72.  Consider the encoding procedure that you designed in
exercise 2.68. What is the order of growth in the number of steps needed to
encode a symbol? Be sure to include the number of steps needed to search the
symbol list at each node encountered. To answer this question in general is
difficult. Consider the special case where the relative frequencies of the n symbols
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are as described in exercise 2.71, and give the order of growth (as a function of
n) of the number of steps needed to encode the most frequent and least
frequent symbols in the alphabet.

32 Allowing quotation in a language wreaks havoc with the ability to reason about the language in simple
terms, because it destroys the notion that equals can be substituted for equals. For example, three is one
plus two, but the word ``three'' is not the phrase ``one plus two.'' Quotation is powerful because it gives us a
way to build expressions that manipulate other expressions (as we will see when we write an interpreter in
chapter 4). But allowing statements in a language that talk about other statements in that language makes it
very difficult to maintain any coherent principle of what ``equals can be substituted for equals'' should mean.
For example, if we know that the evening star is the morning star, then from the statement ``the evening star
is Venus'' we can deduce ``the morning star is Venus.'' However, given that ``John knows that the evening
star is Venus'' we cannot infer that ``John knows that the morning star is Venus.''

33 The single quote is different from the double quote we have been using to enclose character strings to be
printed. Whereas the single quote can be used to denote lists or symbols, the double quote is used only
with character strings. In this book, the only use for character strings is as items to be printed.

34 Strictly, our use of the quotation mark violates the general rule that all compound expressions in our
language should be delimited by parentheses and look like lists. We can recover this consistency by
introducing a special form quote, which serves the same purpose as the quotation mark. Thus, we would type
(quote a) instead of 'a, and we would type (quote (a b c)) instead of '(a b c). This is precisely how the
interpreter works. The quotation mark is just a single-character abbreviation for wrapping the next complete
expression with quote to form (quote <expression>). This is important because it maintains the principle that any
expression seen by the interpreter can be manipulated as a data object. For instance, we could construct the
expression (car '(a b c)), which is the same as (car (quote (a b c))), by evaluating
(list 'car (list 'quote '(a b c))).

35 We can consider two symbols to be ``the same'' if they consist of the same characters in the same order.
Such a definition skirts a deep issue that we are not yet ready to address: the meaning of ``sameness'' in a
programming language. We will return to this in chapter 3 (section 3.1.3).

36 In practice, programmers use equal? to compare lists that contain numbers as well as symbols. Numbers
are not considered to be symbols. The question of whether two numerically equal numbers (as tested by =)
are also eq? is highly implementation-dependent. A better definition of equal? (such as the one that comes as
a primitive in Scheme) would also stipulate that if a and b are both numbers, then a and b are equal? if they
are numerically equal.

37 If we want to be more formal, we can specify ``consistent with the interpretations given above'' to mean
that the operations satisfy a collection of rules such as these:

For any set S and any object x, (element-of-set? x (adjoin-set x S)) is true (informally: ``Adjoining an
object to a set produces a set that contains the object'').

For any sets S and T and any object x, (element-of-set? x (union-set S T)) is equal to (or (element-of-set? x
S) (element-of-set? x T)) (informally: ``The elements of (union S T) are the elements that are in S or in
T'').

For any object x, (element-of-set? x '()) is false (informally: ``No object is an element of the empty
set'').

38 Halving the size of the problem at each step is the distinguishing characteristic of logarithmic growth, as
we saw with the fast-exponentiation algorithm of section 1.2.4 and the half-interval search method of
section 1.3.3.

39 We are representing sets in terms of trees, and trees in terms of lists -- in effect, a data abstraction built
upon a data abstraction. We can regard the procedures entry, left-branch, right-branch, and make-tree as a way
of isolating the abstraction of a ``binary tree'' from the particular way we might wish to represent such a tree
in terms of list structure.

40 Examples of such structures include B-trees and red-black trees. There is a large literature on data
structures devoted to this problem. See Cormen, Leiserson, and Rivest 1990.

41 Exercises 2.63-2.65 are due to Paul Hilfinger.
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42 See Hamming 1980 for a discussion of the mathematical properties of Huffman codes.
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