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3.1  Assignment and Local State

We ordinarily view the world as populated by independent objects, each of which
has a state that changes over time. An object is said to ``have state'' if its
behavior is influenced by its history. A bank account, for example, has state in
that the answer to the question ``Can I withdraw $100?'' depends upon the
history of deposit and withdrawal transactions. We can characterize an object's
state by one or more state variables, which among them maintain enough
information about history to determine the object's current behavior. In a simple
banking system, we could characterize the state of an account by a current
balance rather than by remembering the entire history of account transactions.

In a system composed of many objects, the objects are rarely completely
independent. Each may influence the states of others through interactions, which
serve to couple the state variables of one object to those of other objects.
Indeed, the view that a system is composed of separate objects is most useful
when the state variables of the system can be grouped into closely coupled
subsystems that are only loosely coupled to other subsystems.

This view of a system can be a powerful framework for organizing computational
models of the system. For such a model to be modular, it should be decomposed
into computational objects that model the actual objects in the system. Each
computational object must have its own local state variables describing the actual
object's state. Since the states of objects in the system being modeled change
over time, the state variables of the corresponding computational objects must
also change. If we choose to model the flow of time in the system by the elapsed
time in the computer, then we must have a way to construct computational
objects whose behaviors change as our programs run. In particular, if we wish to
model state variables by ordinary symbolic names in the programming language,
then the language must provide an assignment operator to enable us to change
the value associated with a name.

3.1.1  Local State Variables

To illustrate what we mean by having a computational object with time-varying
state, let us model the situation of withdrawing money from a bank account. We
will do this using a procedure withdraw, which takes as argument an amount to be
withdrawn. If there is enough money in the account to accommodate the
withdrawal, then withdraw should return the balance remaining after the
withdrawal. Otherwise, withdraw should return the message Insufficient funds. For
example, if we begin with $100 in the account, we should obtain the following
sequence of responses using withdraw:

(withdraw 25)
75
(withdraw 25)
50
(withdraw 60)
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"Insufficient funds"
(withdraw 15)
35

Observe that the expression (withdraw 25), evaluated twice, yields different values.
This is a new kind of behavior for a procedure. Until now, all our procedures
could be viewed as specifications for computing mathematical functions. A call to
a procedure computed the value of the function applied to the given arguments,
and two calls to the same procedure with the same arguments always produced
the same result.1

To implement withdraw, we can use a variable balance to indicate the balance of
money in the account and define withdraw as a procedure that accesses balance.
The withdraw procedure checks to see if balance is at least as large as the requested
amount. If so, withdraw decrements balance by amount and returns the new value of
balance. Otherwise, withdraw returns the Insufficient funds message. Here are the
definitions of balance and withdraw:

(define balance 100)

(define (withdraw amount)
  (if (>= balance amount)
      (begin (set! balance (- balance amount))
             balance)
      "Insufficient funds"))

Decrementing balance is accomplished by the expression

(set! balance (- balance amount))

This uses the set! special form, whose syntax is

(set! <name> <new-value>)

Here <name> is a symbol and <new-value> is any expression. Set! changes
<name> so that its value is the result obtained by evaluating <new-value>. In the
case at hand, we are changing balance so that its new value will be the result of
subtracting amount from the previous value of balance.2

Withdraw also uses the begin special form to cause two expressions to be evaluated
in the case where the if test is true: first decrementing balance and then returning
the value of balance. In general, evaluating the expression

(begin <exp1> <exp2> ... <expk>)

causes the expressions <exp1> through <expk> to be evaluated in sequence and

the value of the final expression <expk> to be returned as the value of the entire

begin form.3

Although withdraw works as desired, the variable balance presents a problem. As
specified above, balance is a name defined in the global environment and is freely
accessible to be examined or modified by any procedure. It would be much
better if we could somehow make balance internal to withdraw, so that withdraw
would be the only procedure that could access balance directly and any other
procedure could access balance only indirectly (through calls to withdraw). This
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would more accurately model the notion that balance is a local state variable used
by withdraw to keep track of the state of the account.

We can make balance internal to withdraw by rewriting the definition as follows:

(define new-withdraw
  (let ((balance 100))
    (lambda (amount)
      (if (>= balance amount)
          (begin (set! balance (- balance amount))
                 balance)
          "Insufficient funds"))))

What we have done here is use let to establish an environment with a local
variable balance, bound to the initial value 100. Within this local environment, we
use lambda to create a procedure that takes amount as an argument and behaves like
our previous withdraw procedure. This procedure -- returned as the result of
evaluating the let expression -- is new-withdraw, which behaves in precisely the
same way as withdraw but whose variable balance is not accessible by any other
procedure.4

Combining set! with local variables is the general programming technique we will
use for constructing computational objects with local state. Unfortunately, using
this technique raises a serious problem: When we first introduced procedures, we
also introduced the substitution model of evaluation (section 1.1.5) to provide an
interpretation of what procedure application means. We said that applying a
procedure should be interpreted as evaluating the body of the procedure with
the formal parameters replaced by their values. The trouble is that, as soon as we
introduce assignment into our language, substitution is no longer an adequate
model of procedure application. (We will see why this is so in section 3.1.3.) As a
consequence, we technically have at this point no way to understand why the new-
withdraw procedure behaves as claimed above. In order to really understand a
procedure such as new-withdraw, we will need to develop a new model of procedure
application. In section 3.2 we will introduce such a model, together with an
explanation of set! and local variables. First, however, we examine some variations
on the theme established by new-withdraw.

The following procedure, make-withdraw, creates ``withdrawal processors.'' The formal
parameter balance in make-withdraw specifies the initial amount of money in the
account.5

(define (make-withdraw balance)
  (lambda (amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds")))

Make-withdraw can be used as follows to create two objects W1 and W2:

(define W1 (make-withdraw 100))
(define W2 (make-withdraw 100))
(W1 50)
50
(W2 70)
30
(W2 40)
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"Insufficient funds"
(W1 40)
10

Observe that W1 and W2 are completely independent objects, each with its own
local state variable balance. Withdrawals from one do not affect the other.

We can also create objects that handle deposits as well as withdrawals, and thus
we can represent simple bank accounts. Here is a procedure that returns a ``bank-
account object'' with a specified initial balance:

(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (define (dispatch m)
    (cond ((eq? m 'withdraw) withdraw)
          ((eq? m 'deposit) deposit)
          (else (error "Unknown request -- MAKE-ACCOUNT"
                       m))))
  dispatch)

Each call to make-account sets up an environment with a local state variable balance.
Within this environment, make-account defines procedures deposit and withdraw that
access balance and an additional procedure dispatch that takes a ``message'' as
input and returns one of the two local procedures. The dispatch procedure itself is
returned as the value that represents the bank-account object. This is precisely
the message-passing style of programming that we saw in section 2.4.3, although
here we are using it in conjunction with the ability to modify local variables.

Make-account can be used as follows:

(define acc (make-account 100))
((acc 'withdraw) 50)
50
((acc 'withdraw) 60)
"Insufficient funds"
((acc 'deposit) 40)
90
((acc 'withdraw) 60)
30

Each call to acc returns the locally defined deposit or withdraw procedure, which is
then applied to the specified amount. As was the case with make-withdraw, another call
to make-account

(define acc2 (make-account 100))

will produce a completely separate account object, which maintains its own local
balance.

Exercise 3.1.  An accumulator is a procedure that is called repeatedly with a
single numeric argument and accumulates its arguments into a sum. Each time it
is called, it returns the currently accumulated sum. Write a procedure make-
accumulator that generates accumulators, each maintaining an independent sum.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-17.html#%_sec_2.4.3
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The input to make-accumulator should specify the initial value of the sum; for
example

(define A (make-accumulator 5))
(A 10)
15
(A 10)
25

Exercise 3.2.  In software-testing applications, it is useful to be able to count the
number of times a given procedure is called during the course of a computation.
Write a procedure make-monitored that takes as input a procedure, f, that itself takes
one input. The result returned by make-monitored is a third procedure, say mf, that
keeps track of the number of times it has been called by maintaining an internal
counter. If the input to mf is the special symbol how-many-calls?, then mf returns the
value of the counter. If the input is the special symbol reset-count, then mf resets
the counter to zero. For any other input, mf returns the result of calling f on that
input and increments the counter. For instance, we could make a monitored
version of the sqrt procedure:

(define s (make-monitored sqrt))

(s 100)
10

(s 'how-many-calls?)
1

Exercise 3.3.  Modify the make-account procedure so that it creates password-
protected accounts. That is, make-account should take a symbol as an additional
argument, as in

(define acc (make-account 100 'secret-password))

The resulting account object should process a request only if it is accompanied
by the password with which the account was created, and should otherwise
return a complaint:

((acc 'secret-password 'withdraw) 40)
60

((acc 'some-other-password 'deposit) 50)
"Incorrect password"

Exercise 3.4.  Modify the make-account procedure of exercise 3.3 by adding another
local state variable so that, if an account is accessed more than seven consecutive
times with an incorrect password, it invokes the procedure call-the-cops.

3.1.2  The Benefits of Introducing Assignment

As we shall see, introducing assignment into our programming language leads us
into a thicket of difficult conceptual issues. Nevertheless, viewing systems as
collections of objects with local state is a powerful technique for maintaining a
modular design. As a simple example, consider the design of a procedure rand
that, whenever it is called, returns an integer chosen at random.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_3.1.2
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It is not at all clear what is meant by ``chosen at random.'' What we presumably
want is for successive calls to rand to produce a sequence of numbers that has
statistical properties of uniform distribution. We will not discuss methods for
generating suitable sequences here. Rather, let us assume that we have a
procedure rand-update that has the property that if we start with a given number x1

and form

x2 = (rand-update x1)

x3 = (rand-update x2)

then the sequence of values x1, x2, x3, ..., will have the desired statistical

properties.6

We can implement rand as a procedure with a local state variable x that is
initialized to some fixed value random-init. Each call to rand computes rand-update of
the current value of x, returns this as the random number, and also stores this as
the new value of x.

(define rand
  (let ((x random-init))
    (lambda ()
      (set! x (rand-update x))
      x)))

Of course, we could generate the same sequence of random numbers without
using assignment by simply calling rand-update directly. However, this would mean
that any part of our program that used random numbers would have to explicitly
remember the current value of x to be passed as an argument to rand-update. To
realize what an annoyance this would be, consider using random numbers to
implement a technique called Monte Carlo simulation.

The Monte Carlo method consists of choosing sample experiments at random
from a large set and then making deductions on the basis of the probabilities
estimated from tabulating the results of those experiments. For example, we can

approximate  using the fact that 6/ 2 is the probability that two integers chosen
at random will have no factors in common; that is, that their greatest common
divisor will be 1.7 To obtain the approximation to , we perform a large number
of experiments. In each experiment we choose two integers at random and
perform a test to see if their GCD is 1. The fraction of times that the test is

passed gives us our estimate of 6/ 2, and from this we obtain our approximation
to .

The heart of our program is a procedure monte-carlo, which takes as arguments the
number of times to try an experiment, together with the experiment, represented
as a no-argument procedure that will return either true or false each time it is
run. Monte-carlo runs the experiment for the designated number of trials and
returns a number telling the fraction of the trials in which the experiment was
found to be true.

(define (estimate-pi trials)
  (sqrt (/ 6 (monte-carlo trials cesaro-test))))
(define (cesaro-test)
   (= (gcd (rand) (rand)) 1))
(define (monte-carlo trials experiment)
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  (define (iter trials-remaining trials-passed)
    (cond ((= trials-remaining 0)
           (/ trials-passed trials))
          ((experiment)
           (iter (- trials-remaining 1) (+ trials-passed 1)))
          (else
           (iter (- trials-remaining 1) trials-passed))))
  (iter trials 0))

Now let us try the same computation using rand-update directly rather than rand,
the way we would be forced to proceed if we did not use assignment to model
local state:

(define (estimate-pi trials)
  (sqrt (/ 6 (random-gcd-test trials random-init))))
(define (random-gcd-test trials initial-x)
  (define (iter trials-remaining trials-passed x)
    (let ((x1 (rand-update x)))
      (let ((x2 (rand-update x1)))
        (cond ((= trials-remaining 0)   
               (/ trials-passed trials))
              ((= (gcd x1 x2) 1)
               (iter (- trials-remaining 1)
                     (+ trials-passed 1)
                     x2))
              (else
               (iter (- trials-remaining 1)
                     trials-passed
                     x2))))))
  (iter trials 0 initial-x))

While the program is still simple, it betrays some painful breaches of modularity.
In our first version of the program, using rand, we can express the Monte Carlo
method directly as a general monte-carlo procedure that takes as an argument an
arbitrary experiment procedure. In our second version of the program, with no local
state for the random-number generator, random-gcd-test must explicitly manipulate
the random numbers x1 and x2 and recycle x2 through the iterative loop as the
new input to rand-update. This explicit handling of the random numbers intertwines
the structure of accumulating test results with the fact that our particular
experiment uses two random numbers, whereas other Monte Carlo experiments
might use one random number or three. Even the top-level procedure estimate-pi
has to be concerned with supplying an initial random number. The fact that the
random-number generator's insides are leaking out into other parts of the
program makes it difficult for us to isolate the Monte Carlo idea so that it can be
applied to other tasks. In the first version of the program, assignment
encapsulates the state of the random-number generator within the rand
procedure, so that the details of random-number generation remain independent
of the rest of the program.

The general phenomenon illustrated by the Monte Carlo example is this: From
the point of view of one part of a complex process, the other parts appear to
change with time. They have hidden time-varying local state. If we wish to write
computer programs whose structure reflects this decomposition, we make
computational objects (such as bank accounts and random-number generators)
whose behavior changes with time. We model state with local state variables, and
we model the changes of state with assignments to those variables.
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It is tempting to conclude this discussion by saying that, by introducing
assignment and the technique of hiding state in local variables, we are able to
structure systems in a more modular fashion than if all state had to be
manipulated explicitly, by passing additional parameters. Unfortunately, as we
shall see, the story is not so simple.

Exercise 3.5.  Monte Carlo integration is a method of estimating definite integrals
by means of Monte Carlo simulation. Consider computing the area of a region of
space described by a predicate P(x, y) that is true for points (x, y) in the region
and false for points not in the region. For example, the region contained within a
circle of radius 3 centered at (5, 7) is described by the predicate that tests

whether (x - 5)2 + (y - 7)2< 32. To estimate the area of the region described by
such a predicate, begin by choosing a rectangle that contains the region. For
example, a rectangle with diagonally opposite corners at (2, 4) and (8, 10)
contains the circle above. The desired integral is the area of that portion of the
rectangle that lies in the region. We can estimate the integral by picking, at
random, points (x,y) that lie in the rectangle, and testing P(x, y) for each point to
determine whether the point lies in the region. If we try this with many points,
then the fraction of points that fall in the region should give an estimate of the
proportion of the rectangle that lies in the region. Hence, multiplying this fraction
by the area of the entire rectangle should produce an estimate of the integral.

Implement Monte Carlo integration as a procedure estimate-integral that takes as
arguments a predicate P, upper and lower bounds x1, x2, y1, and y2 for the
rectangle, and the number of trials to perform in order to produce the estimate.
Your procedure should use the same monte-carlo procedure that was used above
to estimate . Use your estimate-integral to produce an estimate of  by measuring
the area of a unit circle.

You will find it useful to have a procedure that returns a number chosen at
random from a given range. The following random-in-range procedure implements
this in terms of the random procedure used in section 1.2.6, which returns a
nonnegative number less than its input.8

(define (random-in-range low high)
  (let ((range (- high low)))
    (+ low (random range))))

Exercise 3.6.  It is useful to be able to reset a random-number generator to
produce a sequence starting from a given value. Design a new rand procedure
that is called with an argument that is either the symbol generate or the symbol
reset and behaves as follows: (rand 'generate) produces a new random number;
((rand 'reset) <new-value>) resets the internal state variable to the designated <new-
value>. Thus, by resetting the state, one can generate repeatable sequences.
These are very handy to have when testing and debugging programs that use
random numbers.

3.1.3  The Costs of Introducing Assignment

As we have seen, the set! operation enables us to model objects that have local
state. However, this advantage comes at a price. Our programming language can
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no longer be interpreted in terms of the substitution model of procedure
application that we introduced in section 1.1.5. Moreover, no simple model with
``nice'' mathematical properties can be an adequate framework for dealing with
objects and assignment in programming languages.

So long as we do not use assignments, two evaluations of the same procedure
with the same arguments will produce the same result, so that procedures can be
viewed as computing mathematical functions. Programming without any use of
assignments, as we did throughout the first two chapters of this book, is
accordingly known as functional programming.

To understand how assignment complicates matters, consider a simplified version
of the make-withdraw procedure of section 3.1.1 that does not bother to check for
an insufficient amount:

(define (make-simplified-withdraw balance)
  (lambda (amount)
    (set! balance (- balance amount))
    balance))
(define W (make-simplified-withdraw 25))
(W 20)
5
(W 10)
- 5

Compare this procedure with the following make-decrementer procedure, which does
not use set!:

(define (make-decrementer balance)
  (lambda (amount)
    (- balance amount)))

Make-decrementer returns a procedure that subtracts its input from a designated
amount balance, but there is no accumulated effect over successive calls, as with
make-simplified-withdraw:

(define D (make-decrementer 25))
(D 20)
5
(D 10)
15

We can use the substitution model to explain how make-decrementer works. For
instance, let us analyze the evaluation of the expression

((make-decrementer 25) 20)

We first simplify the operator of the combination by substituting 25 for balance in
the body of make-decrementer. This reduces the expression to

((lambda (amount) (- 25 amount)) 20)

Now we apply the operator by substituting 20 for amount in the body of the lambda
expression:

(- 25 20)

The final answer is 5.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-10.html#%_sec_1.1.5
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Observe, however, what happens if we attempt a similar substitution analysis with
make-simplified-withdraw:

((make-simplified-withdraw 25) 20)

We first simplify the operator by substituting 25 for balance in the body of make-
simplified-withdraw. This reduces the expression to9

((lambda (amount) (set! balance (- 25 amount)) 25) 20)

Now we apply the operator by substituting 20 for amount in the body of the lambda
expression:

(set! balance (- 25 20)) 25

If we adhered to the substitution model, we would have to say that the meaning
of the procedure application is to first set balance to 5 and then return 25 as the
value of the expression. This gets the wrong answer. In order to get the correct
answer, we would have to somehow distinguish the first occurrence of balance
(before the effect of the set!) from the second occurrence of balance (after the
effect of the set!), and the substitution model cannot do this.

The trouble here is that substitution is based ultimately on the notion that the
symbols in our language are essentially names for values. But as soon as we
introduce set! and the idea that the value of a variable can change, a variable can
no longer be simply a name. Now a variable somehow refers to a place where a
value can be stored, and the value stored at this place can change. In section 3.2
we will see how environments play this role of ``place'' in our computational
model.

Sameness and change

The issue surfacing here is more profound than the mere breakdown of a
particular model of computation. As soon as we introduce change into our
computational models, many notions that were previously straightforward
become problematical. Consider the concept of two things being ``the same.''

Suppose we call make-decrementer twice with the same argument to create two
procedures:

(define D1 (make-decrementer 25))
(define D2 (make-decrementer 25))

Are D1 and D2 the same? An acceptable answer is yes, because D1 and D2 have the
same computational behavior -- each is a procedure that subtracts its input from
25. In fact, D1 could be substituted for D2 in any computation without changing
the result.

Contrast this with making two calls to make-simplified-withdraw:

(define W1 (make-simplified-withdraw 25))
(define W2 (make-simplified-withdraw 25))

Are W1 and W2 the same? Surely not, because calls to W1 and W2 have distinct effects,
as shown by the following sequence of interactions:

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-21.html#%_sec_3.2
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(W1 20)
5
(W1 20)
- 15
(W2 20)
5

Even though W1 and W2 are ``equal'' in the sense that they are both created by
evaluating the same expression, (make-simplified-withdraw 25), it is not true that W1
could be substituted for W2 in any expression without changing the result of
evaluating the expression.

A language that supports the concept that ``equals can be substituted for equals''
in an expresssion without changing the value of the expression is said to be
referentially transparent. Referential transparency is violated when we include set!
in our computer language. This makes it tricky to determine when we can simplify
expressions by substituting equivalent expressions. Consequently, reasoning about
programs that use assignment becomes drastically more difficult.

Once we forgo referential transparency, the notion of what it means for
computational objects to be ``the same'' becomes difficult to capture in a formal
way. Indeed, the meaning of ``same'' in the real world that our programs model is
hardly clear in itself. In general, we can determine that two apparently identical
objects are indeed ``the same one'' only by modifying one object and then
observing whether the other object has changed in the same way. But how can
we tell if an object has ``changed'' other than by observing the ``same'' object
twice and seeing whether some property of the object differs from one
observation to the next? Thus, we cannot determine ``change'' without some a
priori notion of ``sameness,'' and we cannot determine sameness without
observing the effects of change.

As an example of how this issue arises in programming, consider the situation
where Peter and Paul have a bank account with $100 in it. There is a substantial
difference between modeling this as

(define peter-acc (make-account 100))
(define paul-acc (make-account 100))

and modeling it as

(define peter-acc (make-account 100))
(define paul-acc peter-acc)

In the first situation, the two bank accounts are distinct. Transactions made by
Peter will not affect Paul's account, and vice versa. In the second situation,
however, we have defined paul-acc to be the same thing as peter-acc. In effect,
Peter and Paul now have a joint bank account, and if Peter makes a withdrawal
from peter-acc Paul will observe less money in paul-acc. These two similar but
distinct situations can cause confusion in building computational models. With
the shared account, in particular, it can be especially confusing that there is one
object (the bank account) that has two different names (peter-acc and paul-acc); if
we are searching for all the places in our program where paul-acc can be changed,
we must remember to look also at things that change peter-acc.10
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With reference to the above remarks on ``sameness'' and ``change,'' observe that
if Peter and Paul could only examine their bank balances, and could not perform
operations that changed the balance, then the issue of whether the two accounts
are distinct would be moot. In general, so long as we never modify data objects,
we can regard a compound data object to be precisely the totality of its pieces.
For example, a rational number is determined by giving its numerator and its
denominator. But this view is no longer valid in the presence of change, where a
compound data object has an ``identity'' that is something different from the
pieces of which it is composed. A bank account is still ``the same'' bank account
even if we change the balance by making a withdrawal; conversely, we could have
two different bank accounts with the same state information. This complication is
a consequence, not of our programming language, but of our perception of a
bank account as an object. We do not, for example, ordinarily regard a rational
number as a changeable object with identity, such that we could change the
numerator and still have ``the same'' rational number.

Pitfalls of imperative programming

In contrast to functional programming, programming that makes extensive use of
assignment is known as imperative programming. In addition to raising
complications about computational models, programs written in imperative style
are susceptible to bugs that cannot occur in functional programs. For example,
recall the iterative factorial program from section 1.2.1:

(define (factorial n)
  (define (iter product counter)
    (if (> counter n)
        product
        (iter (* counter product)
              (+ counter 1))))
  (iter 1 1))

Instead of passing arguments in the internal iterative loop, we could adopt a
more imperative style by using explicit assignment to update the values of the
variables product and counter:

(define (factorial n)
  (let ((product 1)
        (counter 1))
    (define (iter)
      (if (> counter n)
          product
          (begin (set! product (* counter product))
                 (set! counter (+ counter 1))
                 (iter))))
    (iter)))

This does not change the results produced by the program, but it does introduce
a subtle trap. How do we decide the order of the assignments? As it happens, the
program is correct as written. But writing the assignments in the opposite order

(set! counter (+ counter 1))
(set! product (* counter product))

would have produced a different, incorrect result. In general, programming with
assignment forces us to carefully consider the relative orders of the assignments

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_338
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.1


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH20.html#%_sec_3.1 13/14

to make sure that each statement is using the correct version of the variables that
have been changed. This issue simply does not arise in functional programs.11 The
complexity of imperative programs becomes even worse if we consider
applications in which several processes execute concurrently. We will return to
this in section 3.4. First, however, we will address the issue of providing a
computational model for expressions that involve assignment, and explore the
uses of objects with local state in designing simulations.

Exercise 3.7.  Consider the bank account objects created by make-account, with the
password modification described in exercise 3.3. Suppose that our banking
system requires the ability to make joint accounts. Define a procedure make-joint
that accomplishes this. Make-joint should take three arguments. The first is a
password-protected account. The second argument must match the password
with which the account was defined in order for the make-joint operation to
proceed. The third argument is a new password. Make-joint is to create an
additional access to the original account using the new password. For example, if
peter-acc is a bank account with password open-sesame, then

(define paul-acc
  (make-joint peter-acc 'open-sesame 'rosebud))

will allow one to make transactions on peter-acc using the name paul-acc and the
password rosebud. You may wish to modify your solution to exercise 3.3 to
accommodate this new feature.

Exercise 3.8.  When we defined the evaluation model in section 1.1.3, we said
that the first step in evaluating an expression is to evaluate its subexpressions.
But we never specified the order in which the subexpressions should be evaluated
(e.g., left to right or right to left). When we introduce assignment, the order in
which the arguments to a procedure are evaluated can make a difference to the
result. Define a simple procedure f such that evaluating (+ (f 0) (f 1)) will return
0 if the arguments to + are evaluated from left to right but will return 1 if the
arguments are evaluated from right to left.

1 Actually, this is not quite true. One exception was the random-number generator in section 1.2.6. Another
exception involved the operation/type tables we introduced in section 2.4.3, where the values of two calls to
get with the same arguments depended on intervening calls to put. On the other hand, until we introduce
assignment, we have no way to create such procedures ourselves.

2 The value of a set! expression is implementation-dependent. Set! should be used only for its effect, not for
its value.

The name set! reflects a naming convention used in Scheme: Operations that change the values of variables
(or that change data structures, as we will see in section 3.3) are given names that end with an exclamation
point. This is similar to the convention of designating predicates by names that end with a question mark.

3 We have already used begin implicitly in our programs, because in Scheme the body of a procedure can be
a sequence of expressions. Also, the <consequent> part of each clause in a cond expression can be a
sequence of expressions rather than a single expression.

4 In programming-language jargon, the variable balance is said to be encapsulated within the new-withdraw
procedure. Encapsulation reflects the general system-design principle known as the hiding principle: One can
make a system more modular and robust by protecting parts of the system from each other; that is, by
providing information access only to those parts of the system that have a ``need to know.''
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5 In contrast with new-withdraw above, we do not have to use let to make balance a local variable, since formal
parameters are already local. This will be clearer after the discussion of the environment model of evaluation
in section 3.2. (See also exercise 3.10.)

6 One common way to implement rand-update is to use the rule that x is updated to ax + b modulo m, where
a, b, and m are appropriately chosen integers. Chapter 3 of Knuth 1981 includes an extensive discussion of
techniques for generating sequences of random numbers and establishing their statistical properties. Notice
that the rand-update procedure computes a mathematical function: Given the same input twice, it produces the
same output. Therefore, the number sequence produced by rand-update certainly is not ``random,'' if by
``random'' we insist that each number in the sequence is unrelated to the preceding number. The relation
between ``real randomness'' and so-called pseudo-random sequences, which are produced by well-
determined computations and yet have suitable statistical properties, is a complex question involving difficult
issues in mathematics and philosophy. Kolmogorov, Solomonoff, and Chaitin have made great progress in
clarifying these issues; a discussion can be found in Chaitin 1975.

7 This theorem is due to E. Cesàro. See section 4.5.2 of Knuth 1981 for a discussion and a proof.

8 MIT Scheme provides such a procedure. If random is given an exact integer (as in section 1.2.6) it returns an
exact integer, but if it is given a decimal value (as in this exercise) it returns a decimal value.

9 We don't substitute for the occurrence of balance in the set! expression because the <name> in a set! is
not evaluated. If we did substitute for it, we would get (set! 25 (- 25 amount)), which makes no sense.

10 The phenomenon of a single computational object being accessed by more than one name is known as
aliasing. The joint bank account situation illustrates a very simple example of an alias. In section 3.3 we will
see much more complex examples, such as ``distinct'' compound data structures that share parts. Bugs can
occur in our programs if we forget that a change to an object may also, as a ``side effect,'' change a
``different'' object because the two ``different'' objects are actually a single object appearing under different
aliases. These so-called side-effect bugs are so difficult to locate and to analyze that some people have
proposed that programming languages be designed in such a way as to not allow side effects or aliasing
(Lampson et al. 1981; Morris, Schmidt, and Wadler 1980).

11 In view of this, it is ironic that introductory programming is most often taught in a highly imperative style.
This may be a vestige of a belief, common throughout the 1960s and 1970s, that programs that call
procedures must inherently be less efficient than programs that perform assignments. (Steele (1977) debunks
this argument.) Alternatively it may reflect a view that step-by-step assignment is easier for beginners to
visualize than procedure call. Whatever the reason, it often saddles beginning programmers with ``should I
set this variable before or after that one'' concerns that can complicate programming and obscure the
important ideas.
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