
Today's Lecture

ÅProgramming as the process of creating a new

task-specific language

ïdata abstractions

ïprocedure abstractions

ïhigher-order procedures

Themes to be integrated

ÅData abstraction

ïSeparate use of data structure from details of data structure

ÅProcedural abstraction

ïCapture common patterns of behavior and treat as black box for

generating new patterns

ÅMeans of combination

ïCreate complex combinations, then treat as primitives to support

new combinations

ÅUse modularity of componentsto create new, higher level

languagefor particular problem domain

step1: (forward 1)

(no - opening - on- right?)

(goto step1)

(turn right 90)

step2: (forward 1)

(no - opening - on- left?)

(goto step2)

step3: (forward 1)

(no - opening on left?)

(goto step3)

(turn left 90)

(forward 1)

. . .

RM

Go to first right

Go to second left

Go get me coffee, please.

Level of language matters.

Programming is a process of

inventing task-specific languages.

(while no - opening - on- right (forward 1))

Our target ïthe art of M. C. Escher

ESCHER on ESCHER; Exploring the Infinite, p. 41

Harry Abrams, Inc., New York, 1989

My buddy George

A procedural definition of George

(define (george)

(draw - line 25 0 35 50)

(draw - line 35 50 30 60)

(draw - line 30 60 15 40)

(draw - line 15 40 0 65)

(draw - line 40 0 50 30)

(draw - line 50 30 60 0)

(draw - line 75 0 60 45)

(draw - line 60 45 100 15)

(draw - line 100 35 75 65)

(draw - line 75 65 60 65)

(draw - line 60 65 65 85)

(draw - line 65 85 60 100)

(draw - line 40 100 35 85)

(draw - line 35 85 40 65)

(draw - line 40 65 30 65)

(draw - line 30 65 15 60)

(draw - line 15 60 0 85))

Yuck!!

Whereôs the

abstraction?

0 100
0

100

Need a data abstraction for lines

(2, 3)

(define p1 (make-vect 2 3))

(xcor p1) Ą 2

(ycor p1) Ą 3

(define s1 (make-segment p1 p2))

(xcor (start-segment s1)) Ą 2

(ycor (end-segment s1)) Ą 4

(5, 4)

(define p2 (make-vect 5 4))

A better George
(define p1 (make - vect .25 0))

(define p2 (make - vect .35 .5))

(define p3 (make - vect .3 .6))

(define p4 (make - vect .15 .4))

(define p5 (make - vect 0 .65))

(define p6 (make - vect .4 0))

(define p7 (make - vect .5 .3))

(define p8 (make - vect .6 0))

(define p9 (make - vect .75 0))

(define p10 (make - vect .6 .45))

(define p11 (make - vect 1 .15))

(define p12 (make - vect 1 .35))

(define p13 (make - vect .75 .65))

(define p14 (make - vect .6 .65))

(define p15 (make - vect .65 .85))

(define p16 (make - vect .6 1))

(define p17 (make - vect .4 1))

(define p18 (make - vect .35 .85))

(define p19 (make - vect .4 .65))

(define p20 (make - vect .3 .65))

(define p21 (make - vect .15 .6))

(define p22 (make - vect 0 .85))

(define george - lines

(list (make - segment p1 p2)

(make - segment p2 p3)

(make - segment p3 p4)

(make - segment p4 p5)

(make - segment p6 p7)

(make - segment p7 p8)

(make - segment p9 p10)

(make - segment p10 p11)

(make - segment p12 p13)

(make - segment p13 p14)

(make - segment p14 p15)

(make - segment p15 p16)

(make - segment p17 p18)

(make - segment p18 p19)

(make - segment p19 p20)

(make - segment p20 p21)

(make - segment p21 p22)))

ÅHave isolated elements of abstraction

ÅCould change a point without having to

redefine segments that use it

ÅHave separated data abstraction from its use

Gluing things together

For pairs, use a cons:

For larger structures, use a list:

1 2 3 4

(list 1 2 3 4)

(cons 1 (cons 2 (cons 3 (cons 4 '()))))

Properties of data structures

ÅContract between constructor and selectors

ÅProperty of closure:

ïconsing anything onto a list produces a list

ïTaking the cdr of a list produces a list (except perhaps

for the empty list)

Completing our abstraction

Points or vectors:

(define make-vect cons)

(define xcor car)

(define ycor cdr)

Line segments:

(define make-segment list)

(define start-segment first)

(define end-segment second)

Drawing in a rectangle or frame

(1, 1)

(0, 0)

origin

y axis

x axis

Drawing lines is just algebra

ÅDrawing a line relative to a frame is just some algebra.

ÅSuppose frame has origin o, horizontal axis u and vertical
axis v

ÅThen a point p, with components x and y, gets mapped to
the point: o + xu + yv

(1, 1)

(0, 0)

origin

y axis

x axis

Manipulating vectors

+vect
scale-vect

o + xu + yv

Reassemble new parts

Compute more primitive

operation

(define (+vect v1 v2)

(make-vect (+ (xcor v1) (xcor v2))

(+ (ycor v1) (ycor v2))))

(define (scale-vect vect factor)

(make-vect (* factor (xcor vect))

(* factor (ycor vect))))

(define (-vect v1 v2)

(+vect v1 (scale-vect v2 ï1)))

(define (rotate-vect v angle)

(let ((c (cos angle))

(s (sin angle)))

(make-vect (- (* c (xcor v))

(* s (ycor v)))

(+ (* c (ycor v))

(* s (xcor v))))))

Select parts

What is the underlying

representation of a point? Of a

segment?

Generating the abstraction of a frame

Rectangle:
(define make - rectangle list)

(define origin first)

(define x - axis second)

(define y - axis third)

Determining where to draw a point p:

(define (coord - map rect p)

(+vect (origin rect)

(+vect (scale - vect (x - axis rect) (xcor p))

(scale - vect (y - axis rect) (ycor p)))

))

origin

y axis

x axis

o + xu + yv

(define (coord - map rect)

(lambda (p)

(+vect (origin rect)

(+vect (scale - vect (x - axis rect) (xcor p))

(scale - vect (y - axis rect) (ycor p)))

)))

What happens if we change how an

abstraction is represented?

(define make - vect list)

(define xcor first)

(define ycor second)

Note that this still

satisfies the contract for

vectors

What else needs to change in our system?BUPKIS,

NADA,

NIL,

NOTHING

What is a picture?

ÅMaybe a collection of line segments?
ïThat would work for George:

(define george - lines

(list (make - segment p1 p2)

(make - segment p2 p3)

...))

...but not for Mona

ÅWe want to have flexibility of what we draw and

how we draw it in the frame
ïSOïwe make a picture be a procedure

(define some - primitive - picture

(lambda (rect)

draw some stuff in rect))

Å Captures the procedural abstraction of drawing data within a frame

Creating a picture

segments

make-picture

Picture procrect

picture on screen

The picture abstraction

(define (make-picture seglist)

(lambda (rect)

(for-each

(lambda (segment)

(let* ((b (start-segment segment))

(e (end-segment segment))

(m (coord-map rect))

(b2 (m b))

(e2 (m e)))

(draw-line (xcor b2) (ycor b2)

(xcor e2) (ycor e2))

seglist)))

Higher order

procedure

for - each is like map,

except it doesnôt collect a list

of results, but simply applies

procedure to each element

of list for its effect

let* is like let , except the

names are defined in sequence,

so mcan be used in the

expressions for b2 and e2

A better George

Remember we have george-lines from before

So here is George!
(define george (make - picture george - lines))

(define origin1 (make - vect 0 0))

(define x - axis1 (make - vect 100 0))

(define y - axis1 (make - vect 0 100))

(define frame1

(make - rectangle origin1

x- axis1

y- axis1))

(george frame1)

Operations on pictures

rotate

O

H

V

Oô

Hô

Vô

Operations on pictures

(define (rotate90 pict)

(lambda (rect)

(pict (make - rectangle

(+vect (origin rect)

(x - axis rect))

(y - axis rect)

(scale - vect (x - axis rect) ï1))))

(define (together pict1 pict2)

(lambda (rect)

(pict1 rect)

(pict2 rect)))

(define george (make - picture george - lines))

(george frame1)

Pict

ure

A Georgian mess!

((together george (rotate90 george))

frame1)

Operations on pictures

PictA:

PictB:

beside

above

Creating a picture

Picture proc

Picture proc

beside

picture on screen

rect

More procedures to combine pictures:

(define (beside pict1 pict2 a)

(lambda (rect)

(pict1

(make-rectangle

(origin rect)

(scale-vect (x-axis rect) a)

(y-axis rect)))

(pict2

(make-rectangle

(+vect

(origin rect)

(scale-vect (x-axis rect) a))

(scale-vect (x-axis rect) (- 1 a))

(y-axis rect)))))

(define (above pict1 pict2 a)

(rotate90

(rotate90

(rotate90

(beside (rotate90 pict1)

(rotate90 pict2)

a))))))

Picture operators have a

closure property!

(define (above pict1 pict2 a)

((repeated rotate90 3)

(beside (rotate90 pict1)

(rotate90 pict2)

a))))))

(define (repeated f n)

(if (= n 1)

f

(compose

f (repeated f (- n 1)))))

Big brother

(define big - brother

(beside george

(above empty - picture george .5)

.5))

A left-right flip

H

V flip Vô

Hô

(define (flip pict)

(lambda (rect)

(pict (make - rectangle

(+vect (origin rect) (x - axis rect))

(scale - vect (x - axis rect) ï1)

(y - axis rect)))))

(define acrobats

(beside george

(rotate180 (flip george))

.5))

(define rotate180 (repeated rotate90 2))

(define 4bats

(above acrobats

(flip acrobats)

.5))

Recursive combinations of pictures

(define (up - push pict n)

(if (= n 0)

pict

(above (up - push pict (- n 1))

pict

.25)))

Pushing George around

Pushing George around

(define (right - push pict n)

(if (= n 0)

pict

(beside pict

(right - push pict (- n 1))

.75)))

Pushing George into the corner

(define (corner - push pict n)

(if (= n 0)

pict

(above

(beside

(up - push pict n)

(corner - push pict (- n 1))

.75)

(beside

pict

(right - push pict (- n 1))

.75)

.25)))

Pushing George into a corner

(corner - push 4bats 2)

Putting copies together

(define (4pict p1 r1 p2 r2 p3 r3 p4 r4)

(beside

(above

((repeated rotate90 r1) p1)

((repeated rotate90 r2) p2)

.5)

(above

((repeated rotate90 r3) p3)

((repeated rotate90 r4) p4)

.5)

.5))

(define (4same p r1 r2 r3 r4)

(4pict p r1 p r2 p r3 p r4)) (4same george 0 1 2 3)

(define (square - limit pict n)

(4same (corner - push pict n)

1 2 0 3))

(square - limit 4bats 2)

