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Purpose

The purpose of this project is to explore abstract data types and procedures with state. Part
of this project deals with mutating objects, using set-car! and set-cdr!, which require some
boilerplate to work in Racket. You can find this boilerplate, as well as an outline of the problems
in the project, in the file memoize.scm, which can be obtained from the Projects link on the course
web page. You can also find table-tests.scm there as well – more on that below.

Like the previous project, be sure to include test cases and comments in your code! When
you are ready to submit your code, save the definitions and email it to the course staff at
6.037-psets@mit.edu.

Problem 1: A table for later

Let’s define an abstraction for a simple key-value table (it will be needed for later questions
in this project). It will include a constructor, make-table, a mutator table-put!, accessors
table-has-key? and table-get, and operators table?. Use of the table will look like this:

(define my-table (make-table))

(table? my-table) ;; => #t

(table-put! my-table 'ben-bitdiddle 'chocolate) ;; => undefined

(table-put! my-table 'alyssa-p-hacker 'cake) ;; => undefined

(table-has-key? my-table 'ben-bitdiddle) ;; => #t

(table-has-key? my-table 'louis-reasoner) ;; => #f

(table-get my-table 'ben-bitdiddle) ;; => chocolate

(table-get my-table 'louis-reasoner) ;; => ERROR

Assume that there won’t be a large number of key-value pairs. What will you use to test for
key-equality in table-get and table-has-key? Why?

Write the table abstraction. You may find the assoc procedure useful, although you do not
need to use it. It takes a value and a list of pairs and returns the first pair whose car is equal?-to
the value. You may also find the error function useful – it takes a string, and produces a run-time
error.

We have provided a complete formal test suite for the table abstraction, in the table-tests.scm

file. We’ll talk about these testing functions more next week – but if placed in the same directory as
your memoize.scm file, running it should run a number of tests against your table implementation.
A correct implementation will pass all tests!
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These tests are more complete than we expect for your test cases for the rest of the project – mainly
because they serve as the primary specification for the table abstraction. You should feel free to
write your own test cases in the informal style that we used in the first two projects. As always,
they should be well-chosen exemplars that exercise a number of edge cases of each procedure. Show
both the input and the result, and if the result is not simply observably correct, mention how you
determined the correct value.

Note for debugging: DrRacket will not let you, in its lower Interactions window, set! something
you defined in the upper Definition window.

Problem 2: lambda-net is monitoring you

Recall the recursive definition for fib from the first recitation. Here it is again as a reminder:

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1)) (fib (- n 2)))))

We saw that this procedure shows exponential growth, and worse, it computes the same thing over
and over again.

In general, performance problems in computer programs are often caused by excessive numbers of
calls to the same procedure. To help track down such programming errors, let’s build a procedure
that will allow us to track the number of times a procedure is called.

We will do this by building and returning a new procedure that has local state. Specifically, this
new procedure will keep a counter which is incremented every time we call the original procedure.
We will query and manipulate this counter by passing the new procedure special symbols.

Write the make-monitored procedure. It should take a procedure, f, of one argument and re-
turn a new procedure, mf, of one argument. When mf is passed the special symbol how-many-calls?,
it should return the value of its internal counter. When mf is passed the special symbol reset-call-count,
it should reset its internal counter to zero. If mf is passed any other value, it should increment its
counter and call f with its input.

For example:

(fib 8) ;; => 21

(set! fib (make-monitored fib))

(fib 8) ;; => 21

(fib 'how-many-calls?) ;; => 67

(fib 8) ;; => 21

(fib 'how-many-calls?) ;; => 134

(fib 'reset-call-count)

(fib 'how-many-calls?) ;; => 0

Note that the following will not work as intended:

(define fib ...)

(define mon-fib (make-monitored fib))

(mon-fib 8)

(mon-fib 'how-many-calls?) ;; => 1
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Why doesn’t this correctly record the number of times fib was called? Think about how
the recursive case is handled.

Problem 3: Back to the table

Let’s get a handle on how bad our implementation of fib actually is. Write a procedure,
make-num-calls-table, which given a monitored procedure (a procedure that was returned from
make-monitored) and a number max, returns a new table recording the number of calls the proce-
dure makes for each input between 1 and max.

> (make-num-calls-table fib 10)

(table (1 1) (2 3) (3 5) (4 9) (5 15) (6 25) (7 41) (8 67) (9 109) (10 177))

How many calls to fib are made when you evaluate (fib 20)? (fib 30)?

Problem 4: Remembering the past

Clearly, our fib procedure is very inefficient. Ben Bitdiddle comes up with idea of keeping a list of
prior results in a table, so that if called upon to compute something that’s already been computed,
the prior result can simply be returned again without any further work. Ben starts to modify his
fib procedure to include a key-value table, where the keys are the values of n passed in, and the
values are the result of computing (fib n).

Alyssa P. Hacker sees this and scolds Ben for not thinking bigger. “Surely this concept could apply
to other procedures, not just fib, Ben!” She starts writing a procedure memoize which takes a
procedure of one argument and returns a procedure of one argument. She shows Ben to use it like
this:

(set! fib (memoize fib))

(fib 8) ;; => 21

Write the memoize procedure. It should take a procedure, f, of one argument and return a new
procedure, mf. The first call to mf with a given argument should call f, but cache the result in a
table. Subsequent calls to mf with the same argument should return the cached value instead of
redoing the computation.

Problem 5: (Optional) A word of advice

We can make our monitoring system more generic using advice. Advice is a general method of
augmenting procedures with additional functionality. Some Lisp systems have facilities of adding
advice to procedures globally, allowing add-in libraries to augment system procedures easily.

Our advice system will be relatively simple. It will consist of a pair of procedures of no arguments
that are executed before and after a given procedure of one argument.

Write the advise procedure, which creates a procedure with advice. advise takes three pro-
cedures as arguments (func, before, and after) and returns a new procedure that, when invoked
with an argument, calls before, func with the argument, and then after, finally returning the
result of func.
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> (define (add-1 x) (+ x 1))

> (define advised-add-1

(advise add-1

(lambda () (displayln "calling add-1"))

(lambda () (displayln "add-1 done"))))

> (advised-add-1 5)

calling add-1

add-1 done

6

Problem 6: (Optional) Yep, lambda-net is still monitoring you

Now we’ll reimplement our monitoring procedure using advice. To mix it up a bit, we’ll change the
way we access the number of calls made. Instead of passing a symbol to the returned procedure,
the new monitoring system should print out the number of calls made to the monitored procedure,
but only when the top-most execution of the procedure finishes. That is, the monitored procedure
should not print anything out during recursive calls, only the original call the user made.

> (set! fib (make-monitored-with-advice fib))

> (fib 10)

Num calls: 177

55

Write make-monitored-with-advice.


