
Basic Scheme February 8, 2007

• Compound expressions

• Rules of evaluation

• Creating procedures by capturing common patterns

Previous lecture

• Basics of Scheme

– Expressions and associated values (or syntax
and semantics)

• Self-evaluating expressions

– 1, “this is a string”, #f

• Names

– +, *, >=, <

• Combinations

– (* (+ 1 2) 3)

• Define

• Rules for evaluation

Read-Eval-Print

Visible world

Execution world

(+ 3 (* 4 5))

READ

Internal representation for

expression

EVAL

Value of expression

PRINT

23Visible world

Summary of expressions

• Numbers: value is expression itself

• Primitive procedure names: value is pointer to

internal hardware to perform operation

• “Define”: has no actual value; is used to create a

binding in a table of a name and a value

• Names: value is looked up in table, retrieving

binding

• Rules apply recursively

Simple examples

25 25

(+ (* 3 5) 4) 60

+ [#primitive procedure …]

(define foobar (* 3 5)) no value, creates binding of

foobar and 15

foobar 15 (value is looked up)

(define fred +) no value, creates binding

(fred 3 5) 15

This lecture

Adding procedures and procedural abstractions to

capture processes

Language elements -- procedures

• Need to capture ways of doing things – use
procedures

To process something multiply it by itself

parameters

body

•Special form – creates a procedure and returns it

as value

(lambda (x) (* x x))

Language elements -- procedures

• Use this anywhere you would use a procedure

(

(* 5 5)

(lambda(x)(* x x)) 5)

lambda exp arg

25

Language elements -- abstraction

• Use this anywhere you would use a procedure

(

Don’t want to have to write obfuscatory code – so can give

the lambda a name

(define square (lambda (x) (* x x)))

(square 5) 25
Rumplestiltskin effect!

(The power of naming

things)

(lambda(x)(* x x)) 5)

Scheme Basics

• Rules for evaluating

1. If self-evaluating, return value.

2. If a name, return value associated with name in environment.

3. If a special form, do something special.

4. If a combination, then

a. Evaluate all of the subexpressions of combination (in any order)

b. apply the operator to the values of the operands (arguments) and
return result

• Rules for applying
1. If procedure is primitive procedure, just do it.
2. If procedure is a compound procedure, then:

evaluate the body of the procedure with each formal parameter
replaced by the corresponding actual argument value.

Interaction of define and lambda

1. (lambda (x) (* x x))

==> #[compound-procedure 9]

2. (define square (lambda (x) (* x x)))

==> undef

3. (square 4) ==> 16

4. ((lambda (x) (* x x)) 4) ==> 16

5. (define (square x) (* x x)) ==> undef

This is a convenient shorthand (called “syntactic sugar”) for 2
above – this is a use of lambda!

Lambda special form

• lambda syntax (lambda (x y) (/ (+ x y) 2))

• 1st operand position: the parameter list (x y)

– a list of names (perhaps empty) ()

– determines the number of operands required

• 2nd operand position: the body (/ (+ x y) 2)

– may be any expression(s)

– not evaluated when the lambda is evaluated

– evaluated when the procedure is applied

– value of body is value of last expression evaluated

• mini-quiz: (define x (lambda ()(+ 3 2))) – no value

• x - procedure

• (x) - 5

• semantics of lambda:

THE VALUE OF

A LAMBDA EXPRESSION

IS

A PROCEDURE

The value of a lambda
expression is a
procedure… The value
of a lambda
expression is a
procedure…

Achieving Inner Peace

*Om Mani Padme Hum…

*

(and a good grade)

• How can we use the idea of a procedure to capture a

computational process?

Using procedures to describe processes

What does a procedure describe?

• Capturing a common pattern

– (* 3 3)

– (* 25 25)

– (* foobar foobar)

(lambda (x) (* x x))

Name for thing that

changes

Common pattern to

capture

Modularity of common patterns

Here is a common pattern:

(sqrt (+ (* 3 3) (* 4 4)))

(sqrt (+ (* 9 9) (* 16 16)))

(sqrt (+ (* 4 4) (* 4 4))

Here is one way to capture this pattern:

(define pythagoras

(lambda (x y)

(sqrt (+ (* x x) (* y y)))))

Modularity of common patterns

Here is a common pattern:

(sqrt (+ (* 3 3) (* 4 4)))

(sqrt (+ (* 9 9) (* 16 16)))

(sqrt (+ (* 4 4) (* 4 4)))

So here is a cleaner way of capturing the pattern:
(define square (lambda (x) (* x x)))

(define pythagoras

(lambda (x y)

(sqrt (+ (square x) (square y)))))

Why?

• Breaking computation into modules that capture

commonality

– Enables reuse in other places (e.g. square)

• Isolates (abstracts away) details of computation

within a procedure from use of the procedure

– Useful even if used only once (i.e., a unique pattern)

(define (comp x y)(/(+(* x y) 17)(+(+ x y) 4))))

(define (comp x y)(/ (prod+17 x y) (sum+4 x y)))

Why?

• May be many ways to divide up

(define square (lambda (x) (* x x)))

(define sum-squares

(lambda (x y) (+ (square x) (square y))))

(define pythagoras

(lambda (y x) (sqrt (sum-squares y x))))

(define square (lambda (x) (* x x)))

(define pythagoras

(lambda (x y)

(sqrt (+ (square x) (square y)))))

Abstracting the process

• Stages in capturing common patterns of
computation

– Identify modules or stages of process

– Capture each module within a procedural abstraction

– Construct a procedure to control the interactions
between the modules

– Repeat the process within each module as necessary

A more complex example

• Remember our method for finding sqrts

– To find the square root of X

• Make a guess, called G

• If G is close enough, stop

• Else make a new guess by averaging G and X/G

• When is something “close enough”

• How do we create a new guess

• How do we control the process of using the new guess in

place of the old one

The stages of “SQRT”

Procedural abstractions

For “close enough”:

(define close-enuf?

(lambda (guess x)

(< (abs (- (square guess) x)) 0.001)))

Note use of procedural

abstraction!

Procedural abstractions

For “improve”:

(define average

(lambda (a b) (/ (+ a b) 2)))

(define improve

(lambda (guess x)

(average guess (/ x guess))))

Why this modularity?

• “Average” is something we are likely to want in other computations, so only
need to create once

• Abstraction lets us separate implementation details from use

– Originally:

(define average

(lambda (a b) (/ (+ a b) 2)))

– Could redefine as

– No other changes needed to procedures that use average

– Also note that variables (or parameters) are internal to procedure – cannot
be referred to by name outside of scope of lambda

(define average

(lambda (x y) (* (+ x y) 0.5)))

Controlling the process

• Basic idea:

– Given X, G, want (improve G X) as new guess

– Need to make a decision – for this need a new special form

(if <predicate> <consequence> <alternative>)

The IF special form

(if <predicate> <consequence> <alternative>)

– Evaluator first evaluates the <predicate> expression.

– If it evaluates to a TRUE value, then the evaluator evaluates and

returns the value of the <consequence> expression.

– Otherwise, it evaluates and returns the value of the

<alternative> expression.

– Why must this be a special form? (i.e. why not just a regular

lambda procedure?)

Controlling the process

• Basic idea:

– Given X, G, want (improve G X) as new guess

– Need to make a decision – for this need a new special form

(if <predicate> <consequence> <alternative>)

– So heart of process should be:

(if (close-enuf? G X)

G

(improve G X))

– But somehow we want to use the value returned by “improving” things

as the new guess, and repeat the process

Controlling the process

• Basic idea:

– Given X, G, want (improve G X) as new guess

– Need to make a decision – for this need a new special form

(if <predicate> <consequence> <alternative>)

– So heart of process should be:

(define sqrt-loop (lambda G X)

(if (close-enuf? G X)

G

(sqrt-loop (improve G X) X)

– But somehow we want to use the value returned by “improving” things

as the new guess, and repeat the process

– Call process sqrt-loop and reuse it!

Putting it together

• Then we can create our procedure, by simply

starting with some initial guess:

(define sqrt

(lambda (x)

(sqrt-loop 1.0 x)))

Checking that it does the “right thing”

• Next lecture, we will see a formal way of tracing
evolution of evaluation process

• For now, just walk through basic steps
–(sqrt 2)

• (sqrt-loop 1.0 2)

• (if (close-enuf? 1.0 2) … …)

• (sqrt-loop (improve 1.0 2) 2)

This is just like a normal combination

• (sqrt-loop 1.5 2)

• (if (close-enuf? 1.5 2) … …)

• (sqrt-loop 1.4166666 2)

• And so on…

Abstracting the process

• Stages in capturing common patterns of
computation

– Identify modules or stages of process

– Capture each module within a procedural abstraction

– Construct a procedure to control the interactions
between the modules

– Repeat the process within each module as necessary

Summarizing Scheme

• Primitives

– Numbers

– Strings

– Booleans

– Built in procedures

• Means of Combination

– (procedure argument1 argument2 … argumentn)

• Means of Abstraction

– Lambda

– Define

• Other forms

– if

1, -2.5, 3.67e25

*, +, -, /, =, >, <,

.
Create a procedure

.
Create names

. Control order of evaluation

-- Names

Creates a loop in system

– allows abstraction of

name for object

