
2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 1/21

[Go to first, previous, next page;   contents;   index]

1.1  The Elements of Programming

A powerful programming language is more than just a means for instructing a
computer to perform tasks. The language also serves as a framework within which
we organize our ideas about processes. Thus, when we describe a language, we
should pay particular attention to the means that the language provides for
combining simple ideas to form more complex ideas. Every powerful language
has three mechanisms for accomplishing this:

primitive expressions, which represent the simplest entities the language is
concerned with,

means of combination, by which compound elements are built from
simpler ones, and

means of abstraction, by which compound elements can be named and
manipulated as units.

In programming, we deal with two kinds of elements: procedures and data. (Later
we will discover that they are really not so distinct.) Informally, data is ``stuff'' that
we want to manipulate, and procedures are descriptions of the rules for
manipulating the data. Thus, any powerful programming language should be able
to describe primitive data and primitive procedures and should have methods for
combining and abstracting procedures and data.

In this chapter we will deal only with simple numerical data so that we can focus
on the rules for building procedures.4 In later chapters we will see that these
same rules allow us to build procedures to manipulate compound data as well.

1.1.1  Expressions

One easy way to get started at programming is to examine some typical
interactions with an interpreter for the Scheme dialect of Lisp. Imagine that you
are sitting at a computer terminal. You type an expression, and the interpreter
responds by displaying the result of its evaluating that expression.

One kind of primitive expression you might type is a number. (More precisely, the
expression that you type consists of the numerals that represent the number in
base 10.) If you present Lisp with a number

486

the interpreter will respond by printing5

486

Expressions representing numbers may be combined with an expression
representing a primitive procedure (such as + or *) to form a compound

https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-9.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.1


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 2/21

expression that represents the application of the procedure to those numbers. For
example:

(+ 137 349)
486
(- 1000 334)
666
(* 5 99)
495
(/ 10 5)
2
(+ 2.7 10)
12.7

Expressions such as these, formed by delimiting a list of expressions within
parentheses in order to denote procedure application, are called combinations.
The leftmost element in the list is called the operator, and the other elements are
called operands. The value of a combination is obtained by applying the
procedure specified by the operator to the arguments that are the values of the
operands.

The convention of placing the operator to the left of the operands is known as
prefix notation, and it may be somewhat confusing at first because it departs
significantly from the customary mathematical convention. Prefix notation has
several advantages, however. One of them is that it can accommodate procedures
that may take an arbitrary number of arguments, as in the following examples:

(+ 21 35 12 7)
75

(* 25 4 12)
1200

No ambiguity can arise, because the operator is always the leftmost element and
the entire combination is delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straightforward way
to allow combinations to be nested, that is, to have combinations whose
elements are themselves combinations:

(+ (* 3 5) (- 10 6))
19

There is no limit (in principle) to the depth of such nesting and to the overall
complexity of the expressions that the Lisp interpreter can evaluate. It is we
humans who get confused by still relatively simple expressions such as

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

which the interpreter would readily evaluate to be 57. We can help ourselves by
writing such an expression in the form

(+ (* 3
      (+ (* 2 4)
         (+ 3 5)))
   (+ (- 10 7)
      6))



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 3/21

following a formatting convention known as pretty-printing, in which each long
combination is written so that the operands are aligned vertically. The resulting
indentations display clearly the structure of the expression.6

Even with complex expressions, the interpreter always operates in the same basic
cycle: It reads an expression from the terminal, evaluates the expression, and
prints the result. This mode of operation is often expressed by saying that the
interpreter runs in a read-eval-print loop. Observe in particular that it is not
necessary to explicitly instruct the interpreter to print the value of the expression.7

1.1.2  Naming and the Environment

A critical aspect of a programming language is the means it provides for using
names to refer to computational objects. We say that the name identifies a
variable whose value is the object.

In the Scheme dialect of Lisp, we name things with define. Typing

(define size 2)

causes the interpreter to associate the value 2 with the name size.8 Once the
name size has been associated with the number 2, we can refer to the value 2 by
name:

size
2
(* 5 size)
10

Here are further examples of the use of define:

(define pi 3.14159)
(define radius 10)
(* pi (* radius radius))
314.159
(define circumference (* 2 pi radius))
circumference
62.8318

Define is our language's simplest means of abstraction, for it allows us to use
simple names to refer to the results of compound operations, such as the
circumference computed above. In general, computational objects may have very
complex structures, and it would be extremely inconvenient to have to remember
and repeat their details each time we want to use them. Indeed, complex
programs are constructed by building, step by step, computational objects of
increasing complexity. The interpreter makes this step-by-step program
construction particularly convenient because name-object associations can be
created incrementally in successive interactions. This feature encourages the
incremental development and testing of programs and is largely responsible for
the fact that a Lisp program usually consists of a large number of relatively
simple procedures.

It should be clear that the possibility of associating values with symbols and later
retrieving them means that the interpreter must maintain some sort of memory
that keeps track of the name-object pairs. This memory is called the environment

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.2


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 4/21

(more precisely the global environment, since we will see later that a computation
may involve a number of different environments).9

1.1.3  Evaluating Combinations

One of our goals in this chapter is to isolate issues about thinking procedurally.
As a case in point, let us consider that, in evaluating combinations, the interpreter
is itself following a procedure.

To evaluate a combination, do the following:

1.  Evaluate the subexpressions of the combination.

2.  Apply the procedure that is the value of the leftmost subexpression
(the operator) to the arguments that are the values of the other
subexpressions (the operands).

Even this simple rule illustrates some important points about processes in general.
First, observe that the first step dictates that in order to accomplish the
evaluation process for a combination we must first perform the evaluation
process on each element of the combination. Thus, the evaluation rule is recursive
in nature; that is, it includes, as one of its steps, the need to invoke the rule
itself.10

Notice how succinctly the idea of recursion can be used to express what, in the
case of a deeply nested combination, would otherwise be viewed as a rather
complicated process. For example, evaluating

(* (+ 2 (* 4 6))
   (+ 3 5 7))

requires that the evaluation rule be applied to four different combinations. We
can obtain a picture of this process by representing the combination in the form
of a tree, as shown in figure 1.1. Each combination is represented by a node with
branches corresponding to the operator and the operands of the combination
stemming from it. The terminal nodes (that is, nodes with no branches stemming
from them) represent either operators or numbers. Viewing evaluation in terms of
the tree, we can imagine that the values of the operands percolate upward,
starting from the terminal nodes and then combining at higher and higher levels.
In general, we shall see that recursion is a very powerful technique for dealing
with hierarchical, treelike objects. In fact, the ``percolate values upward'' form of
the evaluation rule is an example of a general kind of process known as tree
accumulation.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.3


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 5/21

Figure 1.1:  Tree representation, showing the value of each subcombination.

Next, observe that the repeated application of the first step brings us to the point
where we need to evaluate, not combinations, but primitive expressions such as
numerals, built-in operators, or other names. We take care of the primitive cases
by stipulating that

the values of numerals are the numbers that they name,

the values of built-in operators are the machine instruction sequences that
carry out the corresponding operations, and

the values of other names are the objects associated with those names in
the environment.

We may regard the second rule as a special case of the third one by stipulating
that symbols such as + and * are also included in the global environment, and are
associated with the sequences of machine instructions that are their ``values.'' The
key point to notice is the role of the environment in determining the meaning of
the symbols in expressions. In an interactive language such as Lisp, it is
meaningless to speak of the value of an expression such as (+ x 1) without
specifying any information about the environment that would provide a meaning
for the symbol x (or even for the symbol +). As we shall see in chapter 3, the
general notion of the environment as providing a context in which evaluation
takes place will play an important role in our understanding of program
execution.

Notice that the evaluation rule given above does not handle definitions. For
instance, evaluating (define x 3) does not apply define to two arguments, one of
which is the value of the symbol x and the other of which is 3, since the purpose
of the define is precisely to associate x with a value. (That is, (define x 3) is not a
combination.)

Such exceptions to the general evaluation rule are called special forms. Define is
the only example of a special form that we have seen so far, but we will meet
others shortly. Each special form has its own evaluation rule. The various kinds of
expressions (each with its associated evaluation rule) constitute the syntax of the
programming language. In comparison with most other programming languages,
Lisp has a very simple syntax; that is, the evaluation rule for expressions can be



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 6/21

described by a simple general rule together with specialized rules for a small
number of special forms.11

1.1.4  Compound Procedures

We have identified in Lisp some of the elements that must appear in any
powerful programming language:

Numbers and arithmetic operations are primitive data and procedures.

Nesting of combinations provides a means of combining operations.

Definitions that associate names with values provide a limited means of
abstraction.

Now we will learn about procedure definitions, a much more powerful abstraction
technique by which a compound operation can be given a name and then
referred to as a unit.

We begin by examining how to express the idea of ``squaring.'' We might say,
``To square something, multiply it by itself.'' This is expressed in our language as

(define (square x) (* x x))

We can understand this in the following way:

(define (square  x)        (*         x     x))
                                            
 To      square something, multiply   it by itself.

We have here a compound procedure, which has been given the name square. The
procedure represents the operation of multiplying something by itself. The thing
to be multiplied is given a local name, x, which plays the same role that a
pronoun plays in natural language. Evaluating the definition creates this
compound procedure and associates it with the name square.12

The general form of a procedure definition is

(define (<name> <formal parameters>) <body>)

The <name> is a symbol to be associated with the procedure definition in the
environment.13 The <formal parameters> are the names used within the body of
the procedure to refer to the corresponding arguments of the procedure. The
<body> is an expression that will yield the value of the procedure application
when the formal parameters are replaced by the actual arguments to which the
procedure is applied.14 The <name> and the <formal parameters> are grouped
within parentheses, just as they would be in an actual call to the procedure being
defined.

Having defined square, we can now use it:

(square 21)
441

(square (+ 2 5))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.4


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 7/21

49

(square (square 3))
81

We can also use square as a building block in defining other procedures. For

example, x2 + y2 can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum-of-squares that, given any two numbers as
arguments, produces the sum of their squares:

(define (sum-of-squares x y)
  (+ (square x) (square y)))

(sum-of-squares 3 4)
25

Now we can use sum-of-squares as a building block in constructing further
procedures:

(define (f a)
  (sum-of-squares (+ a 1) (* a 2)))

(f 5)
136

Compound procedures are used in exactly the same way as primitive procedures.
Indeed, one could not tell by looking at the definition of sum-of-squares given
above whether square was built into the interpreter, like + and *, or defined as a
compound procedure.

1.1.5  The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound procedure, the
interpreter follows much the same process as for combinations whose operators
name primitive procedures, which we described in section 1.1.3. That is, the
interpreter evaluates the elements of the combination and applies the procedure
(which is the value of the operator of the combination) to the arguments (which
are the values of the operands of the combination).

We can assume that the mechanism for applying primitive procedures to
arguments is built into the interpreter. For compound procedures, the application
process is as follows:

To apply a compound procedure to arguments, evaluate the body of the
procedure with each formal parameter replaced by the corresponding
argument.

To illustrate this process, let's evaluate the combination

(f 5)

where f is the procedure defined in section 1.1.4. We begin by retrieving the
body of f:

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.5


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 8/21

(sum-of-squares (+ a 1) (* a 2))

Then we replace the formal parameter a by the argument 5:

(sum-of-squares (+ 5 1) (* 5 2))

Thus the problem reduces to the evaluation of a combination with two operands
and an operator sum-of-squares. Evaluating this combination involves three
subproblems. We must evaluate the operator to get the procedure to be applied,
and we must evaluate the operands to get the arguments. Now (+ 5 1) produces
6 and (* 5 2) produces 10, so we must apply the sum-of-squares procedure to 6 and
10. These values are substituted for the formal parameters x and y in the body of
sum-of-squares, reducing the expression to

(+ (square 6) (square 10))

If we use the definition of square, this reduces to

(+ (* 6 6) (* 10 10))

which reduces by multiplication to

(+ 36 100)

and finally to

136

The process we have just described is called the substitution model for procedure
application. It can be taken as a model that determines the ``meaning'' of
procedure application, insofar as the procedures in this chapter are concerned.
However, there are two points that should be stressed:

The purpose of the substitution is to help us think about procedure
application, not to provide a description of how the interpreter really works.
Typical interpreters do not evaluate procedure applications by manipulating
the text of a procedure to substitute values for the formal parameters. In
practice, the ``substitution'' is accomplished by using a local environment for
the formal parameters. We will discuss this more fully in chapters 3 and 4
when we examine the implementation of an interpreter in detail.

Over the course of this book, we will present a sequence of increasingly
elaborate models of how interpreters work, culminating with a complete
implementation of an interpreter and compiler in chapter 5. The substitution
model is only the first of these models -- a way to get started thinking
formally about the evaluation process. In general, when modeling
phenomena in science and engineering, we begin with simplified,
incomplete models. As we examine things in greater detail, these simple
models become inadequate and must be replaced by more refined models.
The substitution model is no exception. In particular, when we address in
chapter 3 the use of procedures with ``mutable data,'' we will see that the
substitution model breaks down and must be replaced by a more
complicated model of procedure application.15



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 9/21

Applicative order versus normal order

According to the description of evaluation given in section 1.1.3, the interpreter
first evaluates the operator and operands and then applies the resulting
procedure to the resulting arguments. This is not the only way to perform
evaluation. An alternative evaluation model would not evaluate the operands until
their values were needed. Instead it would first substitute operand expressions for
parameters until it obtained an expression involving only primitive operators, and
would then perform the evaluation. If we used this method, the evaluation of

(f 5)

would proceed according to the sequence of expansions

(sum-of-squares (+ 5 1) (* 5 2))

(+    (square (+ 5 1))      (square (* 5 2))  )

(+    (* (+ 5 1) (+ 5 1))   (* (* 5 2) (* 5 2)))

followed by the reductions

(+         (* 6 6)             (* 10 10))

(+           36                   100)

                    136

This gives the same answer as our previous evaluation model, but the process is
different. In particular, the evaluations of (+ 5 1) and (* 5 2) are each performed
twice here, corresponding to the reduction of the expression

(* x x)

with x replaced respectively by (+ 5 1) and (* 5 2).

This alternative ``fully expand and then reduce'' evaluation method is known as
normal-order evaluation, in contrast to the ``evaluate the arguments and then
apply'' method that the interpreter actually uses, which is called applicative-order
evaluation. It can be shown that, for procedure applications that can be modeled
using substitution (including all the procedures in the first two chapters of this
book) and that yield legitimate values, normal-order and applicative-order
evaluation produce the same value. (See exercise 1.5 for an instance of an
``illegitimate'' value where normal-order and applicative-order evaluation do not
give the same result.)

Lisp uses applicative-order evaluation, partly because of the additional efficiency
obtained from avoiding multiple evaluations of expressions such as those
illustrated with (+ 5 1) and (* 5 2) above and, more significantly, because normal-
order evaluation becomes much more complicated to deal with when we leave
the realm of procedures that can be modeled by substitution. On the other hand,
normal-order evaluation can be an extremely valuable tool, and we will
investigate some of its implications in chapters 3 and 4.16

1.1.6  Conditional Expressions and Predicates

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_22
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.6


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 10/21

The expressive power of the class of procedures that we can define at this point
is very limited, because we have no way to make tests and to perform different
operations depending on the result of a test. For instance, we cannot define a
procedure that computes the absolute value of a number by testing whether the
number is positive, negative, or zero and taking different actions in the different
cases according to the rule

This construct is called a case analysis, and there is a special form in Lisp for
notating such a case analysis. It is called cond (which stands for ``conditional''), and
it is used as follows:

(define (abs x)
  (cond ((> x 0) x)
        ((= x 0) 0)
        ((< x 0) (- x))))

The general form of a conditional expression is

(cond (<p1> <e1>)

      (<p2> <e2>)

      
      (<pn> <en>))

consisting of the symbol cond followed by parenthesized pairs of expressions
(<p> <e>) called clauses. The first expression in each pair is a predicate -- that is,
an expression whose value is interpreted as either true or false.17

Conditional expressions are evaluated as follows. The predicate <p1> is evaluated

first. If its value is false, then <p2> is evaluated. If <p2>'s value is also false, then

<p3> is evaluated. This process continues until a predicate is found whose value

is true, in which case the interpreter returns the value of the corresponding
consequent expression <e> of the clause as the value of the conditional
expression. If none of the <p>'s is found to be true, the value of the cond is
undefined.

The word predicate is used for procedures that return true or false, as well as for
expressions that evaluate to true or false. The absolute-value procedure abs makes
use of the primitive predicates >, <, and =.18 These take two numbers as
arguments and test whether the first number is, respectively, greater than, less
than, or equal to the second number, returning true or false accordingly.

Another way to write the absolute-value procedure is

(define (abs x)
  (cond ((< x 0) (- x))
        (else x)))

which could be expressed in English as ``If x is less than zero return - x; otherwise
return x.'' Else is a special symbol that can be used in place of the <p> in the
final clause of a cond. This causes the cond to return as its value the value of the
corresponding <e> whenever all previous clauses have been bypassed. In fact,



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 11/21

any expression that always evaluates to a true value could be used as the <p>
here.

Here is yet another way to write the absolute-value procedure:

(define (abs x)
  (if (< x 0)
      (- x)
      x))

This uses the special form if, a restricted type of conditional that can be used
when there are precisely two cases in the case analysis. The general form of an if
expression is

(if <predicate> <consequent> <alternative>)

To evaluate an if expression, the interpreter starts by evaluating the <predicate>
part of the expression. If the <predicate> evaluates to a true value, the
interpreter then evaluates the <consequent> and returns its value. Otherwise it
evaluates the <alternative> and returns its value.19

In addition to primitive predicates such as <, =, and >, there are logical
composition operations, which enable us to construct compound predicates. The
three most frequently used are these:

(and <e1> ... <en>)

The interpreter evaluates the expressions <e> one at a time, in left-to-right
order. If any <e> evaluates to false, the value of the and expression is false,
and the rest of the <e>'s are not evaluated. If all <e>'s evaluate to true
values, the value of the and expression is the value of the last one.

(or <e1> ... <en>)

The interpreter evaluates the expressions <e> one at a time, in left-to-right
order. If any <e> evaluates to a true value, that value is returned as the
value of the or expression, and the rest of the <e>'s are not evaluated. If all
<e>'s evaluate to false, the value of the or expression is false.

(not <e>)

The value of a not expression is true when the expression <e> evaluates to
false, and false otherwise.

Notice that and and or are special forms, not procedures, because the
subexpressions are not necessarily all evaluated. Not is an ordinary procedure.

As an example of how these are used, the condition that a number x be in the
range 5 < x < 10 may be expressed as

(and (> x 5) (< x 10))

As another example, we can define a predicate to test whether one number is
greater than or equal to another as



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 12/21

(define (>= x y)
  (or (> x y) (= x y)))

or alternatively as

(define (>= x y)
  (not (< x y)))

Exercise 1.1.  Below is a sequence of expressions. What is the result printed by
the interpreter in response to each expression? Assume that the sequence is to
be evaluated in the order in which it is presented.

10
(+ 5 3 4)
(- 9 1)
(/ 6 2)
(+ (* 2 4) (- 4 6))
(define a 3)
(define b (+ a 1))
(+ a b (* a b))
(= a b)
(if (and (> b a) (< b (* a b)))
    b
    a)
(cond ((= a 4) 6)
      ((= b 4) (+ 6 7 a))
      (else 25))
(+ 2 (if (> b a) b a))
(* (cond ((> a b) a)
         ((< a b) b)
         (else -1))
   (+ a 1))

Exercise 1.2.  Translate the following expression into prefix form

Exercise 1.3.  Define a procedure that takes three numbers as arguments and
returns the sum of the squares of the two larger numbers.

Exercise 1.4.  Observe that our model of evaluation allows for combinations
whose operators are compound expressions. Use this observation to describe the
behavior of the following procedure:

(define (a-plus-abs-b a b)
  ((if (> b 0) + -) a b))

Exercise 1.5.  Ben Bitdiddle has invented a test to determine whether the
interpreter he is faced with is using applicative-order evaluation or normal-order
evaluation. He defines the following two procedures:

(define (p) (p))

(define (test x y)
  (if (= x 0)
      0
      y))

Then he evaluates the expression

(test 0 (p))



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 13/21

What behavior will Ben observe with an interpreter that uses applicative-order
evaluation? What behavior will he observe with an interpreter that uses normal-
order evaluation? Explain your answer. (Assume that the evaluation rule for the
special form if is the same whether the interpreter is using normal or applicative
order: The predicate expression is evaluated first, and the result determines
whether to evaluate the consequent or the alternative expression.)

1.1.7  Example: Square Roots by Newton's Method

Procedures, as introduced above, are much like ordinary mathematical functions.
They specify a value that is determined by one or more parameters. But there is
an important difference between mathematical functions and computer
procedures. Procedures must be effective.

As a case in point, consider the problem of computing square roots. We can
define the square-root function as

This describes a perfectly legitimate mathematical function. We could use it to
recognize whether one number is the square root of another, or to derive facts
about square roots in general. On the other hand, the definition does not
describe a procedure. Indeed, it tells us almost nothing about how to actually find
the square root of a given number. It will not help matters to rephrase this
definition in pseudo-Lisp:

(define (sqrt x)
  (the y (and (>= y 0)
              (= (square y) x))))

This only begs the question.

The contrast between function and procedure is a reflection of the general
distinction between describing properties of things and describing how to do
things, or, as it is sometimes referred to, the distinction between declarative
knowledge and imperative knowledge. In mathematics we are usually concerned
with declarative (what is) descriptions, whereas in computer science we are usually
concerned with imperative (how to) descriptions.20

How does one compute square roots? The most common way is to use Newton's
method of successive approximations, which says that whenever we have a guess
y for the value of the square root of a number x, we can perform a simple
manipulation to get a better guess (one closer to the actual square root) by
averaging y with x/y.21 For example, we can compute the square root of 2 as
follows. Suppose our initial guess is 1:

Guess Quotient Average

  

1 (2/1) = 2 ((2 + 1)/2) = 1.5

  

1.5 (2/1.5) = 1.3333 ((1.3333 + 1.5)/2) = 1.4167

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.7


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 14/21

  

1.4167 (2/1.4167) = 1.4118 ((1.4167 + 1.4118)/2) = 1.4142

  

1.4142 ... ...

Continuing this process, we obtain better and better approximations to the
square root.

Now let's formalize the process in terms of procedures. We start with a value for
the radicand (the number whose square root we are trying to compute) and a
value for the guess. If the guess is good enough for our purposes, we are done; if
not, we must repeat the process with an improved guess. We write this basic
strategy as a procedure:

(define (sqrt-iter guess x)
  (if (good-enough? guess x)
      guess
      (sqrt-iter (improve guess x)
                 x)))

A guess is improved by averaging it with the quotient of the radicand and the old
guess:

(define (improve guess x)
  (average guess (/ x guess)))

where

(define (average x y)
  (/ (+ x y) 2))

We also have to say what we mean by ``good enough.'' The following will do for
illustration, but it is not really a very good test. (See exercise 1.7.) The idea is to
improve the answer until it is close enough so that its square differs from the
radicand by less than a predetermined tolerance (here 0.001):22

(define (good-enough? guess x)
  (< (abs (- (square guess) x)) 0.001))

Finally, we need a way to get started. For instance, we can always guess that the
square root of any number is 1:23

(define (sqrt x)
  (sqrt-iter 1.0 x))

If we type these definitions to the interpreter, we can use sqrt just as we can use
any procedure:

(sqrt 9)
3.00009155413138
(sqrt (+ 100 37))
11.704699917758145
(sqrt (+ (sqrt 2) (sqrt 3)))
1.7739279023207892
(square (sqrt 1000))
1000.000369924366



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 15/21

The sqrt program also illustrates that the simple procedural language we have
introduced so far is sufficient for writing any purely numerical program that one
could write in, say, C or Pascal. This might seem surprising, since we have not
included in our language any iterative (looping) constructs that direct the
computer to do something over and over again. Sqrt-iter, on the other hand,
demonstrates how iteration can be accomplished using no special construct other
than the ordinary ability to call a procedure.24

Exercise 1.6.  Alyssa P. Hacker doesn't see why if needs to be provided as a
special form. ``Why can't I just define it as an ordinary procedure in terms of
cond?'' she asks. Alyssa's friend Eva Lu Ator claims this can indeed be done, and
she defines a new version of if:

(define (new-if predicate then-clause else-clause)
  (cond (predicate then-clause)
        (else else-clause)))

Eva demonstrates the program for Alyssa:

(new-if (= 2 3) 0 5)
5

(new-if (= 1 1) 0 5)
0

Delighted, Alyssa uses new-if to rewrite the square-root program:

(define (sqrt-iter guess x)
  (new-if (good-enough? guess x)
          guess
          (sqrt-iter (improve guess x)
                     x)))

What happens when Alyssa attempts to use this to compute square roots?
Explain.

Exercise 1.7.  The good-enough? test used in computing square roots will not be
very effective for finding the square roots of very small numbers. Also, in real
computers, arithmetic operations are almost always performed with limited
precision. This makes our test inadequate for very large numbers. Explain these
statements, with examples showing how the test fails for small and large
numbers. An alternative strategy for implementing good-enough? is to watch how
guess changes from one iteration to the next and to stop when the change is a
very small fraction of the guess. Design a square-root procedure that uses this
kind of end test. Does this work better for small and large numbers?

Exercise 1.8.  Newton's method for cube roots is based on the fact that if y is an
approximation to the cube root of x, then a better approximation is given by the
value

Use this formula to implement a cube-root procedure analogous to the square-
root procedure. (In section 1.3.4 we will see how to implement Newton's method
in general as an abstraction of these square-root and cube-root procedures.)

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3.4


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 16/21

1.1.8  Procedures as Black-Box Abstractions

Sqrt is our first example of a process defined by a set of mutually defined
procedures. Notice that the definition of sqrt-iter is recursive; that is, the
procedure is defined in terms of itself. The idea of being able to define a
procedure in terms of itself may be disturbing; it may seem unclear how such a
``circular'' definition could make sense at all, much less specify a well-defined
process to be carried out by a computer. This will be addressed more carefully in
section 1.2. But first let's consider some other important points illustrated by the
sqrt example.

Observe that the problem of computing square roots breaks up naturally into a
number of subproblems: how to tell whether a guess is good enough, how to
improve a guess, and so on. Each of these tasks is accomplished by a separate
procedure. The entire sqrt program can be viewed as a cluster of procedures
(shown in figure 1.2) that mirrors the decomposition of the problem into
subproblems.

Figure 1.2:  Procedural decomposition of the sqrt program.

The importance of this decomposition strategy is not simply that one is dividing
the program into parts. After all, we could take any large program and divide it
into parts -- the first ten lines, the next ten lines, the next ten lines, and so on.
Rather, it is crucial that each procedure accomplishes an identifiable task that can
be used as a module in defining other procedures. For example, when we define
the good-enough? procedure in terms of square, we are able to regard the square
procedure as a ``black box.'' We are not at that moment concerned with how the
procedure computes its result, only with the fact that it computes the square. The
details of how the square is computed can be suppressed, to be considered at a
later time. Indeed, as far as the good-enough? procedure is concerned, square is not
quite a procedure but rather an abstraction of a procedure, a so-called
procedural abstraction. At this level of abstraction, any procedure that computes
the square is equally good.

Thus, considering only the values they return, the following two procedures for
squaring a number should be indistinguishable. Each takes a numerical argument
and produces the square of that number as the value.25

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_1.1.8
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 17/21

(define (square x) (* x x))

(define (square x) 
  (exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. The users of the
procedure may not have written the procedure themselves, but may have
obtained it from another programmer as a black box. A user should not need to
know how the procedure is implemented in order to use it.

Local names

One detail of a procedure's implementation that should not matter to the user of
the procedure is the implementer's choice of names for the procedure's formal
parameters. Thus, the following procedures should not be distinguishable:

(define (square x) (* x x))

(define (square y) (* y y))

This principle -- that the meaning of a procedure should be independent of the
parameter names used by its author -- seems on the surface to be self-evident,
but its consequences are profound. The simplest consequence is that the
parameter names of a procedure must be local to the body of the procedure. For
example, we used square in the definition of good-enough? in our square-root
procedure:

(define (good-enough? guess x)
  (< (abs (- (square guess) x)) 0.001))

The intention of the author of good-enough? is to determine if the square of the first
argument is within a given tolerance of the second argument. We see that the
author of good-enough? used the name guess to refer to the first argument and x to
refer to the second argument. The argument of square is guess. If the author of
square used x (as above) to refer to that argument, we see that the x in good-enough?
must be a different x than the one in square. Running the procedure square must
not affect the value of x that is used by good-enough?, because that value of x may
be needed by good-enough? after square is done computing.

If the parameters were not local to the bodies of their respective procedures,
then the parameter x in square could be confused with the parameter x in good-
enough?, and the behavior of good-enough? would depend upon which version of
square we used. Thus, square would not be the black box we desired.

A formal parameter of a procedure has a very special role in the procedure
definition, in that it doesn't matter what name the formal parameter has. Such a
name is called a bound variable, and we say that the procedure definition binds
its formal parameters. The meaning of a procedure definition is unchanged if a
bound variable is consistently renamed throughout the definition.26 If a variable is
not bound, we say that it is free. The set of expressions for which a binding
defines a name is called the scope of that name. In a procedure definition, the

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_41


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 18/21

bound variables declared as the formal parameters of the procedure have the
body of the procedure as their scope.

In the definition of good-enough? above, guess and x are bound variables but <, -, abs,
and square are free. The meaning of good-enough? should be independent of the
names we choose for guess and x so long as they are distinct and different from <,
-, abs, and square. (If we renamed guess to abs we would have introduced a bug by
capturing the variable abs. It would have changed from free to bound.) The
meaning of good-enough? is not independent of the names of its free variables,
however. It surely depends upon the fact (external to this definition) that the
symbol abs names a procedure for computing the absolute value of a number.
Good-enough? will compute a different function if we substitute cos for abs in its
definition.

Internal definitions and block structure

We have one kind of name isolation available to us so far: The formal parameters
of a procedure are local to the body of the procedure. The square-root program
illustrates another way in which we would like to control the use of names. The
existing program consists of separate procedures:

(define (sqrt x)
  (sqrt-iter 1.0 x))
(define (sqrt-iter guess x)
  (if (good-enough? guess x)
      guess
      (sqrt-iter (improve guess x) x)))
(define (good-enough? guess x)
  (< (abs (- (square guess) x)) 0.001))
(define (improve guess x)
  (average guess (/ x guess)))

The problem with this program is that the only procedure that is important to
users of sqrt is sqrt. The other procedures (sqrt-iter, good-enough?, and improve) only
clutter up their minds. They may not define any other procedure called good-
enough? as part of another program to work together with the square-root
program, because sqrt needs it. The problem is especially severe in the
construction of large systems by many separate programmers. For example, in the
construction of a large library of numerical procedures, many numerical functions
are computed as successive approximations and thus might have procedures
named good-enough? and improve as auxiliary procedures. We would like to localize
the subprocedures, hiding them inside sqrt so that sqrt could coexist with other
successive approximations, each having its own private good-enough? procedure. To
make this possible, we allow a procedure to have internal definitions that are
local to that procedure. For example, in the square-root problem we can write

(define (sqrt x)
  (define (good-enough? guess x)
    (< (abs (- (square guess) x)) 0.001))
  (define (improve guess x)
    (average guess (/ x guess)))
  (define (sqrt-iter guess x)
    (if (good-enough? guess x)
        guess
        (sqrt-iter (improve guess x) x)))
  (sqrt-iter 1.0 x))

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_%_sec_Temp_43


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 19/21

Such nesting of definitions, called block structure, is basically the right solution to
the simplest name-packaging problem. But there is a better idea lurking here. In
addition to internalizing the definitions of the auxiliary procedures, we can
simplify them. Since x is bound in the definition of sqrt, the procedures good-
enough?, improve, and sqrt-iter, which are defined internally to sqrt, are in the scope
of x. Thus, it is not necessary to pass x explicitly to each of these procedures.
Instead, we allow x to be a free variable in the internal definitions, as shown
below. Then x gets its value from the argument with which the enclosing
procedure sqrt is called. This discipline is called lexical scoping.27

(define (sqrt x)
  (define (good-enough? guess)
    (< (abs (- (square guess) x)) 0.001))
  (define (improve guess)
    (average guess (/ x guess)))
  (define (sqrt-iter guess)
    (if (good-enough? guess)
        guess
        (sqrt-iter (improve guess))))
  (sqrt-iter 1.0))

We will use block structure extensively to help us break up large programs into
tractable pieces.28 The idea of block structure originated with the programming
language Algol 60. It appears in most advanced programming languages and is
an important tool for helping to organize the construction of large programs.

4 The characterization of numbers as ``simple data'' is a barefaced bluff. In fact, the treatment of numbers is
one of the trickiest and most confusing aspects of any programming language. Some typical issues involved
are these: Some computer systems distinguish integers, such as 2, from real numbers, such as 2.71. Is the
real number 2.00 different from the integer 2? Are the arithmetic operations used for integers the same as
the operations used for real numbers? Does 6 divided by 2 produce 3, or 3.0? How large a number can we
represent? How many decimal places of accuracy can we represent? Is the range of integers the same as the
range of real numbers? Above and beyond these questions, of course, lies a collection of issues concerning
roundoff and truncation errors -- the entire science of numerical analysis. Since our focus in this book is on
large-scale program design rather than on numerical techniques, we are going to ignore these problems. The
numerical examples in this chapter will exhibit the usual roundoff behavior that one observes when using
arithmetic operations that preserve a limited number of decimal places of accuracy in noninteger operations.

5 Throughout this book, when we wish to emphasize the distinction between the input typed by the user and
the response printed by the interpreter, we will show the latter in slanted characters.

6 Lisp systems typically provide features to aid the user in formatting expressions. Two especially useful
features are one that automatically indents to the proper pretty-print position whenever a new line is started
and one that highlights the matching left parenthesis whenever a right parenthesis is typed.

7 Lisp obeys the convention that every expression has a value. This convention, together with the old
reputation of Lisp as an inefficient language, is the source of the quip by Alan Perlis (paraphrasing Oscar
Wilde) that ``Lisp programmers know the value of everything but the cost of nothing.''

8 In this book, we do not show the interpreter's response to evaluating definitions, since this is highly
implementation-dependent.

9 Chapter 3 will show that this notion of environment is crucial, both for understanding how the interpreter
works and for implementing interpreters.

10 It may seem strange that the evaluation rule says, as part of the first step, that we should evaluate the
leftmost element of a combination, since at this point that can only be an operator such as + or *
representing a built-in primitive procedure such as addition or multiplication. We will see later that it is
useful to be able to work with combinations whose operators are themselves compound expressions.



2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 20/21

11 Special syntactic forms that are simply convenient alternative surface structures for things that can be
written in more uniform ways are sometimes called syntactic sugar, to use a phrase coined by Peter Landin.
In comparison with users of other languages, Lisp programmers, as a rule, are less concerned with matters of
syntax. (By contrast, examine any Pascal manual and notice how much of it is devoted to descriptions of
syntax.) This disdain for syntax is due partly to the flexibility of Lisp, which makes it easy to change surface
syntax, and partly to the observation that many ``convenient'' syntactic constructs, which make the language
less uniform, end up causing more trouble than they are worth when programs become large and complex.
In the words of Alan Perlis, ``Syntactic sugar causes cancer of the semicolon.''

12 Observe that there are two different operations being combined here: we are creating the procedure, and
we are giving it the name square. It is possible, indeed important, to be able to separate these two notions --
to create procedures without naming them, and to give names to procedures that have already been created.
We will see how to do this in section 1.3.2.

13 Throughout this book, we will describe the general syntax of expressions by using italic symbols delimited
by angle brackets -- e.g., <name> -- to denote the ``slots'' in the expression to be filled in when such an
expression is actually used.

14 More generally, the body of the procedure can be a sequence of expressions. In this case, the interpreter
evaluates each expression in the sequence in turn and returns the value of the final expression as the value
of the procedure application.

15 Despite the simplicity of the substitution idea, it turns out to be surprisingly complicated to give a
rigorous mathematical definition of the substitution process. The problem arises from the possibility of
confusion between the names used for the formal parameters of a procedure and the (possibly identical)
names used in the expressions to which the procedure may be applied. Indeed, there is a long history of
erroneous definitions of substitution in the literature of logic and programming semantics. See Stoy 1977 for
a careful discussion of substitution.

16 In chapter 3 we will introduce stream processing, which is a way of handling apparently ``infinite'' data
structures by incorporating a limited form of normal-order evaluation. In section 4.2 we will modify the
Scheme interpreter to produce a normal-order variant of Scheme.

17 ``Interpreted as either true or false'' means this: In Scheme, there are two distinguished values that are
denoted by the constants #t and #f. When the interpreter checks a predicate's value, it interprets #f as false.
Any other value is treated as true. (Thus, providing #t is logically unnecessary, but it is convenient.) In this
book we will use names true and false, which are associated with the values #t and #f respectively.

18 Abs also uses the ``minus'' operator -, which, when used with a single operand, as in (- x), indicates
negation.

19 A minor difference between if and cond is that the <e> part of each cond clause may be a sequence of
expressions. If the corresponding <p> is found to be true, the expressions <e> are evaluated in sequence
and the value of the final expression in the sequence is returned as the value of the cond. In an if expression,
however, the <consequent> and <alternative> must be single expressions.

20 Declarative and imperative descriptions are intimately related, as indeed are mathematics and computer
science. For instance, to say that the answer produced by a program is ``correct'' is to make a declarative
statement about the program. There is a large amount of research aimed at establishing techniques for
proving that programs are correct, and much of the technical difficulty of this subject has to do with
negotiating the transition between imperative statements (from which programs are constructed) and
declarative statements (which can be used to deduce things). In a related vein, an important current area in
programming-language design is the exploration of so-called very high-level languages, in which one
actually programs in terms of declarative statements. The idea is to make interpreters sophisticated enough
so that, given ``what is'' knowledge specified by the programmer, they can generate ``how to'' knowledge
automatically. This cannot be done in general, but there are important areas where progress has been made.
We shall revisit this idea in chapter 4.

21 This square-root algorithm is actually a special case of Newton's method, which is a general technique for
finding roots of equations. The square-root algorithm itself was developed by Heron of Alexandria in the first
century A.D. We will see how to express the general Newton's method as a Lisp procedure in section 1.3.4.

22 We will usually give predicates names ending with question marks, to help us remember that they are
predicates. This is just a stylistic convention. As far as the interpreter is concerned, the question mark is just
an ordinary character.

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-27.html#%_sec_4.2
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3.4


2016. 9. 6. Structure and Interpretation of Computer Programs

https://mitpress.mit.edu/sicp/fulltext/book/bookZH10.html#%_sec_1.1 21/21

23 Observe that we express our initial guess as 1.0 rather than 1. This would not make any difference in
many Lisp implementations. MIT Scheme, however, distinguishes between exact integers and decimal values,
and dividing two integers produces a rational number rather than a decimal. For example, dividing 10 by 6
yields 5/3, while dividing 10.0 by 6.0 yields 1.6666666666666667. (We will learn how to implement arithmetic
on rational numbers in section 2.1.1.) If we start with an initial guess of 1 in our square-root program, and x
is an exact integer, all subsequent values produced in the square-root computation will be rational numbers
rather than decimals. Mixed operations on rational numbers and decimals always yield decimals, so starting
with an initial guess of 1.0 forces all subsequent values to be decimals.

24 Readers who are worried about the efficiency issues involved in using procedure calls to implement
iteration should note the remarks on ``tail recursion'' in section 1.2.1.

25 It is not even clear which of these procedures is a more efficient implementation. This depends upon the
hardware available. There are machines for which the ``obvious'' implementation is the less efficient one.
Consider a machine that has extensive tables of logarithms and antilogarithms stored in a very efficient
manner.

26 The concept of consistent renaming is actually subtle and difficult to define formally. Famous logicians
have made embarrassing errors here.

27 Lexical scoping dictates that free variables in a procedure are taken to refer to bindings made by
enclosing procedure definitions; that is, they are looked up in the environment in which the procedure was
defined. We will see how this works in detail in chapter 3 when we study environments and the detailed
behavior of the interpreter.

28 Embedded definitions must come first in a procedure body. The management is not responsible for the
consequences of running programs that intertwine definition and use.

[Go to first, previous, next page;   contents;   index]

https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-14.html#%_sec_2.1.1
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#%_sec_1.2.1
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-9.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-4.html#%_toc_start
https://mitpress.mit.edu/sicp/full-text/book/book-Z-H-38.html#%_index_start

